Nano Research

, Volume 11, Issue 3, pp 1612–1624 | Cite as

Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2,4-dichlorophenol

  • Yanduo Liu
  • Ning Sun
  • Shuangying Chen
  • Rui Yan
  • Peng Li
  • Yang Qu
  • Yichun QuEmail author
  • Liqiang JingEmail author
Research Article


It is essential to develop a cheap, recyclable, and efficient photocatalyst to help degrade pollutants contaminating the environment. Herein, mesoporous molecular sieve titanium phosphate (MMS-TiP) was used as an efficient nano-photocatalyst to degrade 2,4-dichlorophenol (2,4-DCP) and to oxidize CO. The catalyst was successfully synthesized by a simple and convenient hydrothermal method in the presence of a tri-block copolymer surfactant. Exceptional photoactivity of the optimized MMS-TiP mainly depends on its porous structure, with a large surface area by means of O2 temperature-programmed desorption curves and fluorescence spectra related to the amounts of produced hydroxyl radical. Interestingly, the photocatalytic activity of the prepared MMS-TiP could be greatly improved by coupling with nanocrystalline SnO2. This is likely due to the increase in the lifetime and separation of photogenerated charges by transferring electrons to SnO2 and was observed by steady-state surface photovoltage spectra and time-resolved surface photovoltage responses. The SnO2-coupled MMS-TiP exhibits better photocatalytic performance for 2,4-DCP degradation and better self-settlement than those of the commercial catalyst P25 TiO2. Moreover, it was confirmed by radical-trapping experiments that ·O2–is the main activated species for the photocatalytic degradation of 2,4-DCP, and is photogenerated by electron transfer from MMS-TiP to SnO2. Furthermore, the main intermediates in the degradation of 2,4-DCP, like parachlorophenol superoxide and 1,2-benzenediol superoxide radicals, were detected, and a possible decomposition pathway related to ·O2–attack is proposed. These experimental results provide new strategies for developing a recyclable molecular sievebased nano-photocatalyst with high photocatalytic activity for environmental remediation.


mesoporous molecular sieve titanium phosphate coupling SnO2 charge separation photocatalysis 2,4-dichlorophenol decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to financial support from the National Natural Science of China (Nos. U1401245, 21501052, and 91622119), the Program for Innovative Research Team in Chinese Universities (No. IRT1237), the Research Project of Chinese Ministry of Education (No. 213011A), Special Funding for Postdoctoral of Heilongjiang Province (No. LBH-TZ06019) and the Science Foundation for Excellent Youth of Harbin City of China (Nos. 2014RFYXJ002, 2016RQQXJ099 and UNPYSCT-2016173).

Supplementary material

12274_2017_1776_MOESM1_ESM.pdf (4.2 mb)
Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2,4-dichlorophenol


  1. [1]
    Liu, Y. D.; Tang, A. W.; Zhang, Q.; Yin, Y. D. Seedmediated growth of anatase TiO2 nanocrystals with coreantenna structures for enhanced photocatalytic activity. J. Am. Chem. Soc. 2015, 137, 11327–11339.CrossRefGoogle Scholar
  2. [2]
    Zhang, S. J.; Liu, X. T.; Wang, M. S.; Wu, B. D.; Pan, B. C.; Yang, H.; Yu, H. Q. Diketone-mediated photochemical processes for target-selective degradation of dye pollutants. Environ. Sci. Technol. Lett. 2014, 1, 167–171.CrossRefGoogle Scholar
  3. [3]
    Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.CrossRefGoogle Scholar
  4. [4]
    Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 2015, 8, 4061–4071.CrossRefGoogle Scholar
  5. [5]
    Humayun, M.; Qu, Y.; Raziq, F.; Yan, R.; Li, Z. J.; Zhang, X. L.; Jing, L. Q. Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 2016, 50, 13600–13610.CrossRefGoogle Scholar
  6. [6]
    Li, H. Y.; Wang, D. J.; Fan, H. M.; Jiang, T. F.; Li, X. L.; Xie, T. F. Synthesis of ordered multivalent Mn–TiO2 nanospheres with tunable size: A high performance visible-light photocatalyst. Nano Res. 2011, 4, 460–469.CrossRefGoogle Scholar
  7. [7]
    Casillas, J. E.; Tzompantzi, F.; Castellanos, S. G.; Mendoza-Damián, G.; Pérez-Hernández, R.; López-Gaona, A.; Barrera, A. Promotion effect of ZnO on the photocatalytic activity of coupled Al2O3-Nd2O3-ZnO composites prepared by the sol-gel method in the degradation of phenol. Appl. Catal. B Environ. 2017, 208, 161–170.CrossRefGoogle Scholar
  8. [8]
    Xu, J.; Liu, X.; Lowry, G. V.; Cao, Z.; Zhao, H.; Zhou, J. L.; Xu, X. H. Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: Rapid adsorption, gradual dechlorination, and desorption of phenol. ACS Appl. Mater. Interfaces 2016, 8, 7333–7342.CrossRefGoogle Scholar
  9. [9]
    Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.CrossRefGoogle Scholar
  10. [10]
    Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Chai, Z. F.; Shi, W, Q. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666–5674.CrossRefGoogle Scholar
  11. [11]
    Taira, K.; Nakao, K.; Suzuki, K.; Einaga, H. SOx tolerant Pt/TiO2 catalysts for CO oxidation and the effect of TiO2 supports on catalytic activity. Environ. Sci. Technol. 2016, 50, 9773–9780.CrossRefGoogle Scholar
  12. [12]
    Zhang, D. P.; Wang, W.; Peng, F. P.; Kou, J. H.; Ni, Y. R.; Lu, C. H.; Xu, Z. Z. A bio-inspired inner-motile photocatalyst film: A magnetically actuated artificial cilia photocatalyst. Nanoscale 2014, 6, 5516–5525.CrossRefGoogle Scholar
  13. [13]
    Sun, N.; Qu, Y.; Chen, S. Y.; Yan, R.; Humayun, M.; Liu, Y. D.; Bai, L. L.; Jing, L. Q.; Fu, H. G. Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi2O3 coupled with phosphate-bridged nano-SnO2. Environ. Sci. Nano 2017, 4, 1147–1154.CrossRefGoogle Scholar
  14. [14]
    Zhang, W. Z.; Koivula, R.; Wiikinkoski, E.; Xu, J. H.; Hietala, S.; Lehto, J.; Harjula, R. efficient and selective recovery of trace scandium by inorganic titanium phosphate ion-exchangers from leachates of waste bauxite residue. ACS Sustainable Chem. Eng. 2017, 5, 3103–3114.CrossRefGoogle Scholar
  15. [15]
    Huang, H. L.; Huang, Y. T.; Wang, S. L. A crystalline mesolamellar gallium phosphate with zwitterionic-type templates exhibiting green afterglow property. Inorg. Chem. 2016, 55, 6836–6838.CrossRefGoogle Scholar
  16. [16]
    Annaniah, L.; Devarajan, M. Investigation on electro-optical performance of aluminium indium gallium phosphate light emitting diode with cracked substrate. Mater. Sci. Semicond. Process. 2015, 36, 84–91.CrossRefGoogle Scholar
  17. [17]
    Bhanja, P.; Senthil, C.; Patra, A. K.; Sasidharan, M.; Bhaumik, A. NASICON type ordered mesoporous lithium-aluminumtitanium-phosphate as electrode materials for lithium-ion batteries. Micropor. Mesopor. Mater. 2017, 240, 57–64.CrossRefGoogle Scholar
  18. [18]
    Cheng, F. F.; He, T. T.; Miao, H. T.; Shi, J. J.; Jiang, L. P.; Zhu, J. J. Electron transfer mediated electrochemical biosensor for MicroRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl. Mater. Interfaces 2015, 7, 2979–2985.CrossRefGoogle Scholar
  19. [19]
    Yada, M.; Inoue, Y.; Sakamoto, A.; Torikai, T.; Watari, T. Synthesis and controllable wettability of micro-and nanostructured titanium phosphate thin films formed on titanium plates. ACS Appl. Mater. Interfaces 2014, 6, 7695–7704.CrossRefGoogle Scholar
  20. [20]
    Wang, C.; Yang, M.; Li, M. R.; Xu, S. T.; Yang, Y.; Tian, P.; Liu, Z. M. A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity. Chem. Commun. 2016, 52, 6463–6466.CrossRefGoogle Scholar
  21. [21]
    McNamara, N. D.; Hicks, J. C. Chelating agent-free, vaporassisted crystallization method to synthesize hierarchical microporous/mesoporous MIL-125 (Ti). ACS Appl. Mater. Interfaces 2015, 7, 5338–5346.CrossRefGoogle Scholar
  22. [22]
    Zhou, L.; Zhang, H. Y.; Sun, H. Q.; Liu, S. M.; Tade, M. O.; Wang, S. B.; Jin, W. Q. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol. 2016, 6, 7002–7023.CrossRefGoogle Scholar
  23. [23]
    Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.CrossRefGoogle Scholar
  24. [24]
    Dahl, M.; Liu, Y. D.; Yin, Y. D. Composite titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9853–9889.CrossRefGoogle Scholar
  25. [25]
    Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852.CrossRefGoogle Scholar
  26. [26]
    Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H. T.; Jing, L. Q. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B Environ. 2017, 201, 486–494.CrossRefGoogle Scholar
  27. [27]
    Kargar, A.; Kim, S. J.; Allameh, P.; Choi, C.; Park, N.; Jeong, H.; Pak, Y.; Jung, G. Y.; Pan, X. Q.; Wang, D. L. et al. p-Si/SnO2/Fe2O3 core/shell/shell nanowire photocathodes for neutral pH water splitting. Adv. Funct. Mater. 2015, 25, 2609–2615.CrossRefGoogle Scholar
  28. [28]
    Li, J. M.; Cheng, H. Y.; Chiu, Y. H.; Hsu, Y. J. ZnO–Au–SnO2 z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale 2016, 8, 15720–15729.CrossRefGoogle Scholar
  29. [29]
    Xie, R. Z.; Meng, X. Y.; Sun, P. Z.; Niu, J. F.; Jiang, W. J.; Bottomley, L.; Li, D.; Chen, Y. S.; Crittenden, J. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Appl. Catal. B Environ. 2017, 203, 515–525.CrossRefGoogle Scholar
  30. [30]
    Ao, Y. H.; Bao, J. Q.; Wang, P. F.; Wang, C.; Hou, J. Bismuth oxychloride modified titanium phosphate nanoplates: A new p–n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants. J. Colloid Interface Sci. 2016, 476, 71–78.CrossRefGoogle Scholar
  31. [31]
    Ao, Y. H.; Bao, J. Q.; Wang, P. F.; Wang, C. A novel heterostructured plasmonic photocatalyst with high photocatalytic activity: Ag@AgCl nanoparticles modified titanium phosphate nanoplates. J. Alloys Compd. 2017, 698, 410–419.CrossRefGoogle Scholar
  32. [32]
    Kamari, Y.; Ghiaci, P.; Ghiaci, M. Study on montmorillonite/insulin/TiO2 hybrid nanocomposite as a new oral drug-delivery system. Mater. Sci. Eng. C 2017, 75, 822–828.CrossRefGoogle Scholar
  33. [33]
    Safajou, H.; Khojasteh, H.; Salavati-Niasari, M.; Mortazavi-Derazkola, S. Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 2017, 498, 423–432.CrossRefGoogle Scholar
  34. [34]
    del Valle, L. J.; Bertran, O.; Chaves, G.; Revilla-López, G.; Rivas, M.; Casas, M. T.; Casanovas, J.; Turon, P.; Puiggalí, J.; Alemán, C. DNA adsorbed on hydroxyapatite surfaces. J. Mater. Chem. B. 2014, 2, 6953–6966.CrossRefGoogle Scholar
  35. [35]
    Ren, L.; Li, Y. Z.; Hou, J. T.; Zhao, X. J.; Pan, C. X. Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores. ACS Appl. Mater. Interfaces 2014, 6, 1608–1615.CrossRefGoogle Scholar
  36. [36]
    Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950–1958.CrossRefGoogle Scholar
  37. [37]
    Ye, J. W.; Zhu, X. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. Few-layered graphene-like boron nitride: A highly efficient adsorbent for indoor formaldehyde removal. Environ. Sci. Technol. Lett. 2017, 4, 20–25.CrossRefGoogle Scholar
  38. [38]
    Yang, D. J.; Liu, H. W.; Zheng, Z. F.; Yuan, Y.; Zhao, J. C.; Waclawik, E. R.; Ke, X. B.; Zhu, H. Y. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885–17893.CrossRefGoogle Scholar
  39. [39]
    Pan, D.; Wan, N.; Ren, Y.; Zhang, W. F.; Lu, X.; Wang, Y. S.; Hu, Y. S.; Bai, Y. Enhanced structural and electrochemical stability of self-similar rice-shaped SnO2 nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 9747–9755.CrossRefGoogle Scholar
  40. [40]
    Liu, Y. F.; Zhu, Y. Y.; Xu, J.; Bai, X. J.; Zong, R. L.; Zhu, Y. F.; Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Appl. Catal. B Environ. 2013, 142–143, 561–567.CrossRefGoogle Scholar
  41. [41]
    Xiao, H.; Liu, R. P.; Zhao, X.; Qu, J. H. Enhanced degradation of 2,4-dinitrotoluene by ozonation in the presence of manganese(II) and oxalic acid. J. Mol. Catal. A Chem. 2008, 286, 149–155.CrossRefGoogle Scholar
  42. [42]
    Chen, S. Y.; Yan, R.; Zhang, X. L.; Hu, K.; Li, Z. J.; Humayun, M.; Qu, Y.; Jing, L. Q. Photogenerated electron modulation to dominantly induce efficient 2,4-dichlorophenol degradation on BiOBr nanoplates with different phosphate modification. Appl. Catal. B Environ. 2017, 209, 320–328.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic TechnologyHeilongjiang UniversityHarbinChina

Personalised recommendations