Advertisement

Nano Research

, Volume 11, Issue 3, pp 1563–1574 | Cite as

Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries

  • Liming Ling
  • Ying BaiEmail author
  • Huali Wang
  • Qiao Ni
  • Jiatao Zhang
  • Feng Wu
  • Chuan WuEmail author
Research Article

Abstract

Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystals and particles could be controlled, resulting in pore evolution. Pores for the random aggregation of secondary particles gradually transformed to nanopores originating from the oriented attachment of the primary nanocrystals, resulting in an excellent micro/nanostructure that increased the performance of a sodium-ion battery. The mesoporous TiO2 microparticle anode, with its unique combination of nanocrystals and uniform nanopores, displays super durability (95 mAh/g after 11,000 cycles at 1 C), high initial efficiency (61.4%), and excellent rate performance (265 and 77 mAh/g at 0.1 and 20 C, respectively). In particular, at slow discharge (0.1 C) and fast charge (5, 50, and 100 C) rates, the anatase TiO2 shows remarkable initial charge capacities of 200, 119, and 56 mAh/g, corresponding to 172, 127, and 56 mAh/g, after 150 cycles, respectively, thus meeting the requirements for fast energy storage. This excellent performance can be attributed to the stability of the material and its high ionic conductivity, resulting from the stable architecture with a mesoporous microstructure and without the random aggregation of secondary particles. A fundamental understanding of the pore structure and controllable pore construction has been proven to be effective in increasing the rate capability and durability of nanostructured electrode materials.

Keywords

oriented attachment pore evolution mesoporous TiO2 durability sodium ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2015CB251100), and the Program for New Century Excellent Talents in University (No. NCET-13-0033).

Supplementary material

12274_2017_1772_MOESM1_ESM.pdf (2.4 mb)
Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries

References

  1. [1]
    Tarascon, J.-M. Is lithium the new gold? Nat. Chem. 2010, 2, 510–510.CrossRefGoogle Scholar
  2. [2]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  3. [3]
    Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.CrossRefGoogle Scholar
  4. [4]
    Fang, C.; Huang, Y. H.; Zhang, W. X.; Han, J. T.; Deng, Z.; Cao, Y. L.; Yang, H. X. Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501727.CrossRefGoogle Scholar
  5. [5]
    Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 2017, 4, 1600275.CrossRefGoogle Scholar
  6. [6]
    Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. Na-rich Na3+xV2−xNix(PO4)3/C for sodium ion batteries: Controlling the doping site and improving the electrochemical performances. ACS Appl. Mater. Interfaces 2016, 8, 27779–27787.CrossRefGoogle Scholar
  7. [7]
    Bai, Y.; Zhao, L. X.; Wu, C.; Li, H.; Li, Y.; Wu, F. Enhanced sodium ion storage behavior of P2-type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route. ACS Appl. Mater. Interfaces 2016, 8, 2857–2865.CrossRefGoogle Scholar
  8. [8]
    You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.CrossRefGoogle Scholar
  9. [9]
    Chen, G. H.; Bai, Y.; Li, H.; Li, Y.; Wang, Z. H.; Ni, Q.; Liu, L.; Wu, F.; Yao, Y. G.; Wu, C. Multilayered electride Ca2N electrode via compression molding fabrication for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 6666–6669.CrossRefGoogle Scholar
  10. [10]
    Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  11. [11]
    Bai, Y.; Wang, Z.; Wu, C.; Xu, R.; Wu, F.; Liu, Y. C.; Li, H.; Li, Y.; Lu, J.; Amine, K. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 5598–5604.CrossRefGoogle Scholar
  12. [12]
    Roh, H.-K.; Kim, H.-K.; Kim, M.-S.; Kim, D.-H.; Chung, K. Y.; Roh, K. C.; Kim, K.-B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844–1855.CrossRefGoogle Scholar
  13. [13]
    Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.CrossRefGoogle Scholar
  14. [14]
    Bai, Y.; Liu, Y. C.; Li, Y.; Ling, L. M.; Wu, F.; Wu, C. Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. RSC Adv. 2017, 7, 5519–5527.CrossRefGoogle Scholar
  15. [15]
    Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H.-M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612.CrossRefGoogle Scholar
  16. [16]
    Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.CrossRefGoogle Scholar
  17. [17]
    Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565.CrossRefGoogle Scholar
  18. [18]
    Xu, Y.; Memarzadeh Lotfabad, E.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975.CrossRefGoogle Scholar
  19. [19]
    Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv. 2013, 3, 12593–12597.CrossRefGoogle Scholar
  20. [20]
    Pérez-Flores, J. C.; Baehtz, C.; Kuhn, A.; García-Alvarado, F. Hollandite-type TiO2: A new negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 1825–1833.CrossRefGoogle Scholar
  21. [21]
    Usui, H.; Yoshioka, S.; Wasada, K.; Shimizu, M.; Sakaguchi, H. Nb-doped rutile TiO2: A potential anode material for Na-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 6567–6573.CrossRefGoogle Scholar
  22. [22]
    Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010, 46, 855–874.CrossRefGoogle Scholar
  23. [23]
    Wang, B. F.; Zhao, F.; Du, G. D.; Porter, S.; Liu, Y.; Zhang, P.; Cheng, Z. X.; Liu, H. K.; Huang, Z. G. Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 16009–16015.CrossRefGoogle Scholar
  24. [24]
    Hwang, J.-Y.; Myung, S.-T.; Lee, J.-H.; Abouimrane, A.; Belharouak, I.; Sun, Y.-K. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 2015, 16, 218–226.CrossRefGoogle Scholar
  25. [25]
    Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929–6936.CrossRefGoogle Scholar
  26. [26]
    Henry, A.; Louvain, N.; Fontaine, O.; Stievano, L.; Monconduit, L.; Boury, B. Synthesis of titania@carbon nanocomposite from urea-impregnated cellulose for efficient lithium and sodium batteries. ChemSusChem 2016, 9, 264–273.CrossRefGoogle Scholar
  27. [27]
    Kim, K.-T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y.-K.; Lu, J.; Amine, K.; Myung, S.-T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.CrossRefGoogle Scholar
  28. [28]
    Yang, X. M.; Wang, C.; Yang, Y. C.; Zhang, Y.; Jia, X. N.; Chen, J.; Ji, X. B. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes. J. Mater. Chem. A 2015, 3, 8800–8807.CrossRefGoogle Scholar
  29. [29]
    Yan, D.; Yu, C. Y.; Bai, Y.; Zhang, W. F.; Chen, T. Q.; Hu, B. W.; Sun, Z.; Pan, L. K. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem. Commun. 2015, 51, 8261–8264.CrossRefGoogle Scholar
  30. [30]
    Tahir, M. N.; Oschmann, B.; Buchholz, D.; Dou, X. W.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501489.CrossRefGoogle Scholar
  31. [31]
    Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  32. [32]
    Uchaker, E.; Cao, G. Z. Mesocrystals as electrode materials for lithium-ion batteries. Nanotoday 2014, 9, 499–524.CrossRefGoogle Scholar
  33. [33]
    Jo, M. K.; Hong, Y. S.; Choo, J.; Cho, J. Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J. Electrochem. Soc. 2009, 156, A430–A434.CrossRefGoogle Scholar
  34. [34]
    Ge, X.; Gu, C. D.; Wang, X. L.; Tu, J. P. Correlation between microstructure and electrochemical behavior of the mesoporous Co3O4 sheet and its ionothermal synthesized hydrotalcite-like α-Co(OH)2 precursor. J. Phys. Chem. C 2014, 118, 911–923.CrossRefGoogle Scholar
  35. [35]
    Lee, S. H.; Yu, S.-H.; Lee, J. E.; Jin, A.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T.-Y.; Kim, Y.-W. et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256.CrossRefGoogle Scholar
  36. [36]
    Bommier, C.; Luo, W.; Gao, W.-Y.; Greaney, A.; Ma, S. Q.; Ji, X. L. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 2014, 76, 165–174.CrossRefGoogle Scholar
  37. [37]
    Ye, J. F.; Liu, W.; Cai, J. G.; Chen, S.; Zhao, X. W.; Zhou, H. H.; Qi, L. M. Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 2011, 133, 933–940.CrossRefGoogle Scholar
  38. [38]
    Zhang, Q.; Liu, S.-J.; Yu, S.-H. Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J. Mater. Chem. 2008, 19, 191–207.CrossRefGoogle Scholar
  39. [39]
    Qian, H. M.; Zhao, Q.; Dai, B. S.; Guo, L. J.; Zhang, J. X.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Oriented attachment of nanoparticles to form micrometer-sized nanosheets/nanobelts by topotactic reaction on rigid/flexible substrates with improved electronic properties. NPG Asia Mater. 2015, 7, e152.CrossRefGoogle Scholar
  40. [40]
    Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215–219.CrossRefGoogle Scholar
  41. [41]
    Wang, J.; Zhou, Y. K.; Hu, Y. Y.; O’Hayre, R.; Shao, Z. P. Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 2529–2536.CrossRefGoogle Scholar
  42. [42]
    Zeng, L. X.; Zheng, C.; Xia, L. C.; Wang, Y. X.; Wei, M. D. Ordered mesoporous TiO2-C nanocomposite as an anode material for long-term performance lithium-ion batteries. J. Mater. Chem. A 2013, 1, 4293–4299.CrossRefGoogle Scholar
  43. [43]
    Grosso, D.; de A. A. Soler-Illia, G. J.; Crepaldi, E. L.; Charleux, B.; Sanchez, C. Nanocrystalline transition-metal oxide spheres with controlled multi-scale porosity. Adv. Funct. Mater. 2003, 13, 37–42.CrossRefGoogle Scholar
  44. [44]
    Matos, J. R.; Kruk, M.; Mercuri, L. P.; Jaroniec, M.; Zhao, L.; Kamiyama, T.; Terasaki, O.; Pinnavaia, T. J.; Liu, Y. Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time. J. Am. Chem. Soc. 2003, 125, 821–829.CrossRefGoogle Scholar
  45. [45]
    Yuan, C. Z.; Zhang, X. G.; Su, L. H.; Gao, B.; Shen, L. F. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772–5777.CrossRefGoogle Scholar
  46. [46]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.CrossRefGoogle Scholar
  47. [47]
    Yu, J. G.; Su, Y. R.; Cheng, B.; Zhou, M. H. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J. Mol. Catal. A: Chem. 2006, 258, 104–112.CrossRefGoogle Scholar
  48. [48]
    Zhao, X. W.; Jin, W. Z.; Cai, J. G.; Ye, J. F.; Li, Z. H.; Ma, Y. R.; Xie, J. L.; Qi, L. M. Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets. Adv. Funct. Mater. 2011, 21, 3554–3563.CrossRefGoogle Scholar
  49. [49]
    Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005, 437, 664–670.CrossRefGoogle Scholar
  50. [50]
    Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.CrossRefGoogle Scholar
  51. [51]
    Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 6650–6653.CrossRefGoogle Scholar
  52. [52]
    Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.CrossRefGoogle Scholar
  53. [53]
    Chowdhury, I.; Walker, S. L.; Mylon, S. E. Aggregate morphology of nano-TiO2: Role of primary particle size, solution chemistry, and organic matter. Environ. Sci. Process. Impacts 2012, 15, 275–282.CrossRefGoogle Scholar
  54. [54]
    Liu, H. S.; Bi, Z. H.; Sun, X. G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M. Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 2011, 23, 3450–3454.CrossRefGoogle Scholar
  55. [55]
    Ren, Y.; Hardwick, L. J.; Bruce, P. G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem., Int. Ed. 2010, 49, 2570–2574.CrossRefGoogle Scholar
  56. [56]
    Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.CrossRefGoogle Scholar
  57. [57]
    Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2 graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 2013, 25, 6298–6302.CrossRefGoogle Scholar
  58. [58]
    Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.CrossRefGoogle Scholar
  59. [59]
    Oh, S.-M.; Hwang, J.-Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y.-K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295–11301.CrossRefGoogle Scholar
  60. [60]
    Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Collaborative Innovation Center of Electric Vehicles in BeijingBeijingChina
  3. 3.Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations