Nano Research

, Volume 11, Issue 3, pp 1530–1540 | Cite as

Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting

  • Zhenzhen Li
  • Zhonghai ZhangEmail author
Research Article


Photoelectrochemical (PEC) water splitting by photocathodes based on p-type semiconductors is a promising process for direct and efficient hydrogen generation. The identification of ideal photocathode materials with a high photoconversion efficiency and long-term stability is still a significant challenge. Herein, we propose a new photocathode consisting of Cu2S-coated Cu2O nanowires (NWs) supported on a three-dimensional porous copper foam. The Cu2S thin layer is generated in situ on the surface of the Cu2O NWs and has four functions: (1) Sensitizer, with a band gap of 1.2 eV, for extending the range of optical absorption into the near-infrared region; (2) electron trapper, with appropriate energy level alignment to Cu2O, for achieving effective electron transfer and trapping; (3) electrocatalyst, with excellent electrocatalytic activity for the hydrogen evolution reaction; and (4) protector, preventing direct contact between Cu2O and the electrolyte in order to significantly increase the stability. A photocathode based on the tetrafunctional Cu2S-coated Cu2O NWs exhibits significantly enhanced PEC performance and remarkably improved long-term stability under illumination. The present strategy, based on the in situ generation of multifunctional layers, opens a new avenue for the rational design of photocathodes for PEC water reduction.


cuprous oxide cuprous sulfide nanowire photocathode water reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Z.H.Z. thanks to the support from “Yingcai” program of ECNU and the National Natural Science Foundation of China (NSFC) (No. 21405046).

Supplementary material

12274_2017_1769_MOESM1_ESM.pdf (2.1 mb)
Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting


  1. [1]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  2. [2]
    Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 2013, 7, 1709–1717.CrossRefGoogle Scholar
  3. [3]
    Li, Z. Z.; Xin, Y. M.; Zhang, Z. H. New photocathodic analysis platform with quasi-core/shell-structured TiO2@ Cu2O for sensitive detection of H2O2 release from living cells. Anal. Chem. 2015, 87, 10491–10497.CrossRefGoogle Scholar
  4. [4]
    Zhang, R.; Yang, L.; Huang, X. N.; Chen, T.; Qu, F. L.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. Se doping: An effective strategy toward Fe2O3 nanorod arrays for greatly enhanced solar water oxidation. J. Mater. Chem. A 2017, 5, 12086–12090.CrossRefGoogle Scholar
  5. [5]
    Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461.CrossRefGoogle Scholar
  6. [6]
    Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M. Ultrathin films on copper(I) oxide water splitting photocathodes: A study on performance and stability. Energy Environ. Sci. 2012, 5, 8673–8681.CrossRefGoogle Scholar
  7. [7]
    Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X. L. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059.CrossRefGoogle Scholar
  8. [8]
    Schreier, M.; Luo, J. S.; Gao, P.; Moehl, T.; Mayer, M. T.; Grätzel, M. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 2016, 138, 1938–1946.CrossRefGoogle Scholar
  9. [9]
    Zhang, L. Z.; Jing, D. W.; Guo, L. J.; Yao, X. D. In situ photochemical synthesis of Zn-doped Cu2O hollow microcubes for high efficient photocatalytic H2 production. ACS Sustainable Chem. Eng. 2014, 2, 1446–1452.CrossRefGoogle Scholar
  10. [10]
    Tian, J. Q.; Li, H. Y.; Xing, Z. C.; Wang, L.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. One-pot green hydrothermal synthesis of CuO-Cu2O-Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal. Sci. Technol., 2012, 2, 2227–2230.CrossRefGoogle Scholar
  11. [11]
    Ho-Kimura, S.; Moniz, S. J. A.; Tang, J.; Parkin, I. P. A method for synthesis of renewable Cu2O junction composite electrodes and their photoelectrochemical properties. ACS Sustainable Chem. Eng. 2015, 3, 710–717.CrossRefGoogle Scholar
  12. [12]
    Shi, J.; Li, J.; Huang, X. J.; Tan, Y. W. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra. Nano Res. 2011, 4, 448–459.CrossRefGoogle Scholar
  13. [13]
    Zhang, Z. H.; Wang, P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 2012, 22, 2456–2464.CrossRefGoogle Scholar
  14. [14]
    Zhuang, T. T.; Liu, Y.; Li, Y.; Zhao, Y.; Wu, L.; Jiang, J.; Yu, S. H. Integration of semiconducting sulfides for fullspectrum solar energy absorption and efficient charge separation. Angew. Chem., Int. Ed. 2016, 55, 6396–6400.CrossRefGoogle Scholar
  15. [15]
    Minguez-Bacho, I.; Courté, M.; Fan, H. J.; Fichou, D. Conformal Cu2S-Coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. Nanotechnology 2015, 26, 185401.CrossRefGoogle Scholar
  16. [16]
    Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017.CrossRefGoogle Scholar
  17. [17]
    Kim, Y.; Park, K. Y.; Jang, D. M.; Song, Y. M.; Kim, H. S.; Cho, Y. J.; Myung, Y.; Park, J. Synthesis of Au-Cu2S coreshell nanocrystals and their photocatalytic and electrocatalytic activity. J. Phys. Chem. C 2010, 114, 22141–22146.CrossRefGoogle Scholar
  18. [18]
    Xie, L.; Asiri, A. M.; Sun, X. P. Monolithically integrated copper phosphide nanowire: An efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection. Sens. Actuators. B: Chem. 2017, 244, 11–16.CrossRefGoogle Scholar
  19. [19]
    Liu, M.; Zhang, R.; Zhang, L. X.; Liu, D. N.; Hao, S.; Du, G.; Asiri, M. A.; Kong, R.; Sun, X. P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorg. Chem. Front. 2017, 4, 420–423.CrossRefGoogle Scholar
  20. [20]
    Alam, R.; Labine, M.; Karwacki, J. C.; Kamat, P. V. Modulation of Cu2–xS nanocrystal plasmon resonance through reversible photoinduced electron transfer. ACS Nano 2016, 10, 2880–2886.CrossRefGoogle Scholar
  21. [21]
    Georgieva, Z. N.; Tomat, M. A.; Kim, C.; Plass, K. E. Stabilization of Plasmon resonance in Cu2−xS semiconductor nanoparticles. Chem. Commun. 2016, 52, 9082–9085.CrossRefGoogle Scholar
  22. [22]
    Wang, S. H.; Riedinger, A.; Li, H. B.; Fu, C. H.; Liu, H. Y.; Li, L. L.; Liu, T. L.; Tan, L. F.; Barthel, M. J.; Pugliese, G. et al. Plasmonic copper sulfide nanocrystals exhibiting nearinfrared photothermal and photodynamic therapeutic effects. ACS Nano 2015, 9, 1788–1800.CrossRefGoogle Scholar
  23. [23]
    Li, M.; Zhao, R. J.; Su, Y. J.; Hu, J.; Yang, Z.; Zhang, Y. F. Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 2017, 203, 715–724.CrossRefGoogle Scholar
  24. [24]
    Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.CrossRefGoogle Scholar
  25. [25]
    Xie, L. S.; Tang, C.; Wang, K. Y.; Du, R.; Asiri, A. M.; Sun, X. P. Cu(OH)2@CoCO3(OH)2·nH2O core-shell heterostructure nanowire array: an efficient 3D anodic catalyst for oxygen evolution and methanol electrooxidation. Small 2017, 13, 1602755.CrossRefGoogle Scholar
  26. [26]
    Zhao, Y.; Wang, C. Y.; Wallace, G. G. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO.J. Mater. Chem. A 2016, 4, 10710–10718.CrossRefGoogle Scholar
  27. [27]
    Wu, G. J.; Guan, N. J.; Li, L. D. Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition. Catal. Sci. Technol. 2011, 1, 601–608.CrossRefGoogle Scholar
  28. [28]
    Meng, C. H.; Liu, Z. Y.; Zhang, T. R.; Zhai, J. Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem. 2015, 17, 2764–2768.CrossRefGoogle Scholar
  29. [29]
    Nakamura, S.; Yamamoto, A. Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 2001, 65, 79–85.CrossRefGoogle Scholar
  30. [30]
    Du, J. K.; Bao, J. G.; Fu, X. Y.; Lu, C. H.; Kim, S. H. Mesoporous sulfur-modified iron oxide as an effective fenton-like catalyst for degradation of bisphenol A. Appl. Catal. B 2016, 184, 132–141.CrossRefGoogle Scholar
  31. [31]
    Amorousse, R.; Fujisato, K.; Habu, H.; Bachar, A.; Follet-Houttemane, C.; Hori, K. Catalytic decomposition of ammonium dinitramide (ADN) as high energetic material over CuO-based catalysts. Catal. Sci. Technol. 2013, 3, 2614–2619.CrossRefGoogle Scholar
  32. [32]
    An, L.; Huang, L.; Zhou, P. P.; Yin, J.; Liu, H. Y.; Xi, P. X. A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv. Funct. Mater. 2015, 25, 6814–6822.Google Scholar
  33. [33]
    Zhang, Z. H.; Yang, X. L.; Hedhili, M. N.; Ahmed, E.; Shi, L.; Wang, P. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interface 2014, 6, 691–696.CrossRefGoogle Scholar
  34. [34]
    Wang, P.; Ng, Y. H.; Amal, R. Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 2013, 5, 2952–2958.CrossRefGoogle Scholar
  35. [35]
    Huang, Q.; Kang, F.; Liu, H.; Li, Q.; Xiao, X. D. Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. J. Mater. Chem. A, 2013, 1, 2418–2425.CrossRefGoogle Scholar
  36. [36]
    Kargar, A.; Partokia, S. S.; Niu, M. T.; Allameh, P.; Yang, M. C.; May, S.; Cheung, J. S.; Sun, K.; Xu, K.; Wang, D. Solution-grown 3D Cu2O networks for efficient solar water splitting. Nanotechnology 2014, 25, 205401.CrossRefGoogle Scholar
  37. [37]
    Dubale, A. A.; Pan, C. J.; Tamirat, A. G.; Chen, H. M.; Su, W. N.; Chen, C. H.; Rick, J.; Ayele, D. W.; Aragaw, B. A.; Lee, J. F. et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 2015, 3, 12482–12499.CrossRefGoogle Scholar
  38. [38]
    Dubale, A. A.; Su, W. N.; Tamirat, A. G.; Pan, C. J.; Aragaw, B. A.; Chen, H. M.; Chen, C. H.; Hwang, B. J. The Nano Res. 11 synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. J. Mater. Chem. A 2014, 2, 18383–18397.CrossRefGoogle Scholar
  39. [39]
    Dubale, A. A.; Tamirat, A. G.; Chen, H. M.; Berhe, T. A.; Pan, C. J.; Su, W. N.; Hwang, B. J. A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 2205–2216.CrossRefGoogle Scholar
  40. [40]
    Jin, Z. X.; Hu, Z. F.; Yu, J. C.; Wang, J. F. Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. J. Mater. Chem. A, 2016, 4, 13736–13741.CrossRefGoogle Scholar
  41. [41]
    Ye, M. D.; Gong, J. J.; Lai, Y. K.; Lin, C. J.; Lin, Z. Q. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723.CrossRefGoogle Scholar
  42. [42]
    Savchenko, N. D.; Shchurova, T. N.; Popovych, K. O.; Rubish, I. D.; Leising, G. Simulation of electronic states in the band gap of ZnS:Cu, Cl crystallophosphors. Semicond. Phys., Quantum Electron. Optoelectron. 2004, 7, 133–137.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations