Advertisement

Nano Research

, Volume 11, Issue 3, pp 1500–1519 | Cite as

Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material

  • Mingtao Qiao
  • Xingfeng Lei
  • Yong Ma
  • Lidong Tian
  • Xiaowei He
  • Kehe Su
  • Qiuyu ZhangEmail author
Research Article

Abstract

Yolk–shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymerization was used to synthesize nanochains with a one-dimensional (1D) structure. Then, a polypyrrole shell was uniformly applied to the surface of the nanochains through oxidant-directed vapor-phase polymerization, and finally the pyrolysis process was completed. The obtained products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analyses (TGA) to confirm the compositions. The morphology and microstructure were observed using an optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The N2 absorption–desorption isotherms indicate a Brunauer–Emmett–Teller (BET) specific surface area of 74 m2/g and a pore width of 5–30 nm. Investigations of the microwave absorption performance indicate that paraffin-based composites loaded with 20 wt.% yolk–shell Fe3O4@N-doped carbon nanochains possess a minimum reflection loss of −63.09 dB (11.91 GHz) and an effective absorption bandwidth of 5.34 GHz at a matching layer thickness of 3.1 mm. In addition, by tailoring the layer thicknesses, the effective absorption frequency bands can be made to cover most of the C, X, and Ku bands. By offering the advantages of stronger absorption, broad absorption bandwidth, low loading, thin layers, and intrinsic light weight, yolk–shell Fe3O4@N-doped carbon nanochains will be excellent candidates for practical application to microwave absorption. An analysis of the microwave absorption mechanism reveals that the excellent microwave absorption performance can be explained by the quarter-wavelength cancellation theory, good impedance matching, intense conductive loss, multiple reflections and scatterings, dielectric loss, magnetic loss, and microwave plasma loss.

Keywords

yolk–shell nanochains Fe3O4 polypyrrole N-doped carbon microwave absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Nos. 51433008 and 51673156).

Supplementary material

12274_2017_1767_MOESM1_ESM.pdf (1.5 mb)
Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material

References

  1. [1]
    Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.CrossRefGoogle Scholar
  2. [2]
    Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.CrossRefGoogle Scholar
  3. [3]
    Okoniewski, M.; Stuchly, M. A. A study of the handset antenna and human body interaction. IEEE Trans. Microw. Theory Tech. 1996, 44, 1855–1864.CrossRefGoogle Scholar
  4. [4]
    Frey, A. H. Headaches from cellular telephones: Are they real and what are the implications? Environ. Health Perspect. 1998, 106, 101–103.CrossRefGoogle Scholar
  5. [5]
    Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.CrossRefGoogle Scholar
  6. [6]
    Zhang, B.; Du, Y. C.; Zhang, P.; Zhao, H. T.; Kang, L. L.; Han, X. J.; Xu, P. Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 2013, 130, 1909–1916.CrossRefGoogle Scholar
  7. [7]
    Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.CrossRefGoogle Scholar
  8. [8]
    Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, S. Y.; Sun, C. H.; Yan, J.; Chen, P. Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly (3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845.CrossRefGoogle Scholar
  9. [9]
    Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.CrossRefGoogle Scholar
  10. [10]
    Chen, C.; Liu, Q. H.; Bi, H.; You, W. B.; She, W.; Che, R. C. Fabrication of hierarchical TiO2 coated Co20Ni80 particles with tunable core sizes as high-performance wide-band microwave absorbers. Phys. Chem. Chem. Phys. 2016, 18, 26712–26718.CrossRefGoogle Scholar
  11. [11]
    Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732.CrossRefGoogle Scholar
  12. [12]
    Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem. Eng. J. 2016, 304, 552–562.CrossRefGoogle Scholar
  13. [13]
    Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Well-defined core-shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: Synthesis and their superior microwave absorption performance in the Ku band. Ind. Eng. Chem. Res. 2016, 55, 6263–6275.CrossRefGoogle Scholar
  14. [14]
    Liu, J. W.; Cheng, J.; Chen, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. C 2013, 117, 489–495.CrossRefGoogle Scholar
  15. [15]
    Liu, J. W.; Xu, J. J.; Chen, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem. Eur. J. 2013, 21, 6746–6752.CrossRefGoogle Scholar
  16. [16]
    Liu, J. W.; Xu, J. J.; Chen, R. C.; Chen, H. J.; Liu, Z. W.; Xia, F. Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. J. Mater. Chem. 2012, 22, 9277–9284.CrossRefGoogle Scholar
  17. [17]
    Xu, J. J.; Liu, J. W.; Chen, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.CrossRefGoogle Scholar
  18. [18]
    Tian, C. H.; Du, Y. C.; Cui, C. S.; Deng, Z. L.; Xue, J. L.; Xu, P.; Qiang, R.; Wang, Y.; Han, X. J. Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. J. Mater. Sci. 2017, 52, 6349–6361.CrossRefGoogle Scholar
  19. [19]
    Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Shao, G.; Fan, B. B.; Bai, Z. Y.; Zhang, R. Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 28917–28925.CrossRefGoogle Scholar
  20. [20]
    Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.CrossRefGoogle Scholar
  21. [21]
    Wu, R. B.; Zhou, K.; Yang, Z. H.; Qian, X. K.; Wei, J.; Liu, L.; Huang, Y. Z.; Kong, L. B.; Wang, L. Y. Moltensalt-mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 2013, 15, 570–576.CrossRefGoogle Scholar
  22. [22]
    Liu, J.; Cao, M.-S.; Luo, Q.; Shi, H.-L.; Wang, W.-Z.; Yuan, J. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 2016, 8, 22615–22622.CrossRefGoogle Scholar
  23. [23]
    Han, R.; Li, W.; Pan, W. W.; Zhu, M. G.; Zhou, D.; Li, F.-S. 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 2014, 4, 7493.CrossRefGoogle Scholar
  24. [24]
    Shen, J. Y.; Yao, Y. T.; Liu, Y. J.; Leng, J. S. Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C 2016, 4, 7614–7621.CrossRefGoogle Scholar
  25. [25]
    Zhang, X. F.; Li, Y. X.; Liu, R. G.; Rao, Y.; Rong, H. W.; Qin, G. W. High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 2016, 8, 3494–3498.CrossRefGoogle Scholar
  26. [26]
    Ma, M. L.; Zhang, Q. Y.; Zhang, H. P.; Geng, W. C.; Zhang, B. L.; Dou, J. B. Preparation of one-dimensional Fe3O4/ P(MAA-DVB) nanochains by magnetic-field-induced precipitation polymerization. Sci. Sin. Chim. 2012, 42, 1007–1013.CrossRefGoogle Scholar
  27. [27]
    Ma, M. L.; Zhang, Q. Y.; Xin, T. J.; Zhang, H. P.; Geng, W. C.; Jian, Z. Preparation and characterization of structure-tailored magnetic fluorescent Fe3O4/P(GMA–EGDMA–NVCz) core–shell microspheres. J. Mater. Sci. 2013, 48, 5302–5308.CrossRefGoogle Scholar
  28. [28]
    Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Wang, W. B.; Su, K. H.; Zhang, Q. Y. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloy. Compd. 2016, 693, 432–439.CrossRefGoogle Scholar
  29. [29]
    Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S. G.; Qi, X. Q.; Wei, Z. D. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5414–5420.CrossRefGoogle Scholar
  30. [30]
    Zhang, B. L.; Li, P. T.; Zhang, H. P.; Li, X. J.; Tian, L.; Wang, H.; Chen, X.; Ali, N.; Ali, Z.; Zhang, Q. Y. Redblood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Appl. Surf. Sci. 2016, 366, 328–338.CrossRefGoogle Scholar
  31. [31]
    Zhang, B. L.; Li, P. T.; Zhang, H. P.; Wang, H.; Li, X. J.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Y. Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 2016, 291, 287–297.CrossRefGoogle Scholar
  32. [32]
    Lei, X. F.; Chen, Y.; Zhang, H. P.; Li, X. J.; Yao, P.; Zhang, Q. Y. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater. Interfaces 2013, 5, 10207–10220.CrossRefGoogle Scholar
  33. [33]
    Gu, J. W.; Liang, C. B.; Zhao, X. M.; Gan, B.; Qiu, H.; Guo, Y.; Yang, X. Q.; Zhang, Q.; Wang, D.-Y. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos. Sci. Technol. 2017, 139, 83–89.CrossRefGoogle Scholar
  34. [34]
    Reddy, G. K.; Boolchand, P.; Smirniotis, P. G. Unexpected behavior of copper in modified ferrites during high temperature WGS Reaction Aspects of Fe3+↔Fe2+ redox chemistry from Mössbauer and XPS studies. J. Phys. Chem. C 2012, 116, 11019–11031.CrossRefGoogle Scholar
  35. [35]
    Lei, X. F.; Chen, Y. H.; Qiao, M. T.; Tian, L. D.; Zhang, Q. Y. Hyperbranched polysiloxane (HBPSi)-based polyimide films with ultralow dielectric permittivity, desirable mechanical and thermal properties. J. Mater. Chem. C 2016, 4, 2134–2146.CrossRefGoogle Scholar
  36. [36]
    Gu, J. W.; Meng, X. D.; Tang, Y. S.; Li, Y.; Zhuang, Q.; Kong, J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos. A: Appl. Sci. Manufact. 2017, 92, 27–32.CrossRefGoogle Scholar
  37. [37]
    Zhang, X. H.; Jin, B.; Li, L. L.; Cheng, T.; Wang, H. H.; Xin, P. M.; Lang, X. Y.; Yang, C. C.; Gao, W.; Zhu, Y. F. et al. (De)Lithiation of tubular polypyrrole-derived carbon/ sulfur composite in lithium-sulfur batteries. J. Electroanal. Chem. 2016, 780, 26–31.CrossRefGoogle Scholar
  38. [38]
    Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.CrossRefGoogle Scholar
  39. [39]
    To, J. W.; He, J. J.; Mei, J. G.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S. C.; Bae, W.-G.; Pan, L. J.; Tok, J. B.-H. et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.CrossRefGoogle Scholar
  40. [40]
    Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energ. Environ. Sci. 2011, 4, 717–724.CrossRefGoogle Scholar
  41. [41]
    Kwon, T.; Nishihara, H.; Itoi, H.; Yang, Q.-H.; Kyotani, T. Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Langmuir 2009, 25, 11961–11968.CrossRefGoogle Scholar
  42. [42]
    Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M. G.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.CrossRefGoogle Scholar
  43. [43]
    Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.CrossRefGoogle Scholar
  44. [44]
    Li, W. R.; Chen, D. H.; Li, Z.; Shi, Y. F.; Wan, Y.; Huang, J. J.; Yang, J. J.; Zhao, D. Y.; Jiang, Z. Y. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem. Commun. 2007, 9, 569–573.CrossRefGoogle Scholar
  45. [45]
    Herzer, G. Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 1992, 112, 258–262.CrossRefGoogle Scholar
  46. [46]
    Livingston, J. D. A review of coercivity mechanisms (invited). J. Appl. Phys. 1981, 52, 2544–2548.CrossRefGoogle Scholar
  47. [47]
    Li, N.; Huang, G.-W.; Li, Y.; Xiao, H.-M.; Feng, Q.-P.; Hu, N.; Fu, S.-Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.CrossRefGoogle Scholar
  48. [48]
    Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.CrossRefGoogle Scholar
  49. [49]
    Huang, X. G.; Zhang, J.; Lai, M.; Sang, T. Y. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloy. Compd. 2015, 627, 367–373.CrossRefGoogle Scholar
  50. [50]
    Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.CrossRefGoogle Scholar
  51. [51]
    Zhang, T.; Huang, D. Q.; Yang, Y.; Kang, F. Y.; Gu, J. L. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng.: B 2013, 178, 1–9.CrossRefGoogle Scholar
  52. [52]
    Liu, X.; Guo, H. Z.; Xie, Q. S.; Luo, Q.; Wang, L.-S.; Peng, D.-L. Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. J. Alloy. Compd. 2015, 649, 537–543.CrossRefGoogle Scholar
  53. [53]
    Li, W. X.; Lv, B. L.; Wang, L. C.; Li, G. M.; Xu, Y. Fabrication of Fe3O4@C core–shell nanotubes and their application as a lightweight microwave absorbent. RSC Adv. 2014, 4, 55738–55744.CrossRefGoogle Scholar
  54. [54]
    Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.CrossRefGoogle Scholar
  55. [55]
    Chen, Y.-J.; Xiao, G.; Wang, T.-S.; Ouyang, Q.-Y.; Qi, L.-H.; Ma, Y.; Gao, P.; Zhu, C.-L.; Cao, M.-S.; Jin, H.-B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608.CrossRefGoogle Scholar
  56. [56]
    Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.CrossRefGoogle Scholar
  57. [57]
    Fleming, J. Web Navigation: Designing the User Experience; O’Reilly Media: Sebastopol, CA, 1998.Google Scholar
  58. [58]
    Sun, Y.; Xu, J. L.; Qiao, W.; Xu, X. B.; Zhang, W. L.; Zhang, K. Y.; Zhang, X.; Chen, X.; Zhong, W.; Du, Y. W. Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces 2016, 8, 31878–31886.CrossRefGoogle Scholar
  59. [59]
    Fang, P. H. Cole–Cole diagram and the distribution of relaxation times. J. Chem. Phys. 1965, 42, 3411–3413.CrossRefGoogle Scholar
  60. [60]
    Shi, X.-L.; Cao, M.-S.; Yuan, J.; Fang, X.-Y. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009, 95, 163108.CrossRefGoogle Scholar
  61. [61]
    Zhao, B.; Zhao, W. Y.; Shao, G.; Fan, B. B.; Zhang, R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Dalton T. 2015, 44, 15984–15993.CrossRefGoogle Scholar
  62. [62]
    Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys. Chem. Chem. Phys. 2015, 17, 2531–2539.CrossRefGoogle Scholar
  63. [63]
    Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.CrossRefGoogle Scholar
  64. [64]
    Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres. RSC Adv. 2014, 4, 57424–57429.CrossRefGoogle Scholar
  65. [65]
    Liu, Y.; Cui, T. T.; Wu, T.; Li, Y. N.; Tong, G. X. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 2016, 27, 165707.CrossRefGoogle Scholar
  66. [66]
    Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.CrossRefGoogle Scholar
  67. [67]
    Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@ CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.CrossRefGoogle Scholar
  68. [68]
    Chen, Y.-J.; Gao, P.; Wang, R.-X.; Zhu, C.-L.; Wang, L.-J.; Cao, M.-S.; Jin, H.-B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061–10064.CrossRefGoogle Scholar
  69. [69]
    Ohkoshi, S. I.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.; Sasaki, S. A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets. Angew. Chem., Int. Ed. 2007, 46, 8392–8395.CrossRefGoogle Scholar
  70. [70]
    Tian, C. H.; Du, Y. C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J. L.; Ma, J.; Zhao, H. T.; Han, X. J. Constructing uniform core–shell PPy@ PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099.CrossRefGoogle Scholar
  71. [71]
    Menéndez, J. A.; Juárez-Pérez, E. J.; Ruisánchez, E.; Bermúdez, J. M.; Arenillas, A. Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon 2011, 49, 346–349.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Mingtao Qiao
    • 1
  • Xingfeng Lei
    • 1
  • Yong Ma
    • 1
  • Lidong Tian
    • 1
  • Xiaowei He
    • 1
  • Kehe Su
    • 1
  • Qiuyu Zhang
    • 1
    Email author
  1. 1.Department of Applied Chemistry, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations