Advertisement

Nano Research

, Volume 11, Issue 3, pp 1490–1499 | Cite as

Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials

  • Haoran Du
  • Kuangfu Huang
  • Min Li
  • Yuanyuan Xia
  • Yixuan Sun
  • Mengkang Yu
  • Baoyou GengEmail author
Research Article

Abstract

Porous hollow Co3O4 microspheres have been synthesized from a mixed cobalt nitrate and urea solution through spray pyrolysis followed by calcination at 600 °C in air. This porous hollow Co3O4 is assembled by nanoparticles and exhibits variable porosity depending on the amount of gas in the system. In pyrolysis process, urea continuously decomposes into gaseous components, which act as a template to control the porous structure. The amount of gas escaping from precursor droplets can directly influence the porosity of the microspheres and the size of the nanoparticles controlled by the ratio of urea to cobalt nitrate. Electrochemical measurements show that the performance of the porous hollow Co3O4 microspheres is related to the porosity and size of the nanoparticles. The sample with optimal porosity delivers a high first charge capacity of 1,417.9 mAh·g−1 at 0.2C (1C = 890 mA·g−1), and superior charge cycle performance of 1,012.7 mAh·g−1 after 100 cycles. In addition, the optimized material displays satisfactory rate performance of 1,012.4 mAh·g−1 at 1C after 50 cycles and 881.3 mAh·g−1 at 2C after 300 cycles. Superior charge/discharge capacity, excellent rate performance and high yield achieved in this study is promising for the development of high-performance Co3O4 anode materials for lithium-ion batteries.

Keywords

Co3O4 gas template tunable porosity spray pyrolysis anode lithium-ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21471006, 21271009), the Programs for Science and Technology Development of Anhui Province (No. 1501021019), the Recruitment Program for Leading Talent Team of Anhui Province, the Program for Innovative Research Team of Anhui Education Committee, and the Research Foundation for Science and Technology Leaders and Candidates of Anhui Province.

Supplementary material

12274_2017_1766_MOESM1_ESM.pdf (1.3 mb)
Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials

References

  1. [1]
    Wu, F.; Huang, R.; Mu, D. B.; Wu, B. R.; Chen, Y. J. Controlled synthesis of graphitic carbon-encapsulated a-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochim. Acta 2016, 187, 508–516.CrossRefGoogle Scholar
  2. [2]
    Li, X. Y.; Ma,Y. Y.; Cao, G. Z.; Qu, Y. Q. FeOx@carbon yolk/shell nanowires with tailored void spaces as stable and high-capacity anodes for lithium ion batteries. J. Mater. Chem. A 2016, 4, 12487–12496.CrossRefGoogle Scholar
  3. [3]
    Zhang, Q. Y.; Luo, X.; Wang, L. N.; Zhang, L. F.; Khalid, B.; Gong, J. H.; Wu, H. Lithium-ion battery cycling for magnetism control. Nano Lett. 2016, 16, 583–587.CrossRefGoogle Scholar
  4. [4]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  5. [5]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  6. [6]
    Chan, C. K.; Peng, H. L; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  7. [7]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  8. [8]
    Zeng, H. B.; Duan, G. T.; Li, Y.; Yang, S. K.; Xu, X. X.; Cai, W. P. Blue luminescence of ZnO nanoparticles based on non-equilibrium process: defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561–572.CrossRefGoogle Scholar
  9. [9]
    Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.CrossRefGoogle Scholar
  10. [10]
    Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112–3115.CrossRefGoogle Scholar
  11. [11]
    Hu, J. K.; Sun, C. F.; Gillette, E.; Gui, Z.; Wang, Y. H.; Lee, S. B. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes. Nanoscale 2016, 8, 12958–12969.CrossRefGoogle Scholar
  12. [12]
    Zeng, L.; Pan, A. Q.; Liang, S. Q.; Wang, J. B.; Cao, G. Z. Novel synthesis of V2O5 hollow microspheres for lithium ion batteries. Sci. China Mater. 2016, 59, 567–573.CrossRefGoogle Scholar
  13. [13]
    Huang, G. Y.; Xu, S. M.; Lu, S. S.; Li, L. Y.; Sun, H. Y. Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243.CrossRefGoogle Scholar
  14. [14]
    Du, H. R.; Yuan, C.; Huang, K. F.; Wang, W. H.; Zhang, K.; Geng, B. Y. A novel gelatin-guided mesoporous bowknot-like Co3O4 anode material for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 5342–5350.CrossRefGoogle Scholar
  15. [15]
    Wang, B.; Lu, X. Y.; Tang, Y. Y. Synthesis of snowflakeshaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 9689–9699.CrossRefGoogle Scholar
  16. [16]
    Hu, R. Z.; Zhang, H. P.; Bu, Y. F.; Zhang, H. Y.; Zhao, B. T.; Yang, C. H. Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery. Electrochim. Acta 2017, 228, 241–250.CrossRefGoogle Scholar
  17. [17]
    Li, Z. P.; Yu, X. Y.; Paik, U. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. J. Power Sources 2016, 310, 41–46.CrossRefGoogle Scholar
  18. [18]
    Li, W.; Wu, Z. X.; Wang, J. X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287–298.CrossRefGoogle Scholar
  19. [19]
    Jeong, I.; Jo, C.; Anthonysamy, A.; Kim, J. M.; Kang, E.; Hwang, J.; Ramasamy, E.; Rhee, S. W.; Kim, J. K.; Ha, K. S. et al. Ordered mesoporous tungsten suboxide counter electrode for highly efficient iodine-free electrolyte-based dye-sensitized solar cells. ChemSusChem 2013, 6, 299–307.CrossRefGoogle Scholar
  20. [20]
    Yu, L.; Wu, H. B.; Lou, X. W. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293–301.CrossRefGoogle Scholar
  21. [21]
    Wang, Q.; Yu, B. W.; Li, X.; Xing, L. L.; Xue, X. Y. Core-shell Co3O4/ZnCo2O4 coconut-like hollow spheres with extremely high performance as anode materials for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 425–433.CrossRefGoogle Scholar
  22. [22]
    Ko, Y. N.; Park, S. B.; Jung, K. Y.; Kang, Y. C. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries. Nano Lett. 2013, 13, 5462–5466.CrossRefGoogle Scholar
  23. [23]
    Son, M. Y.; Hong, Y. J.; Kang, Y. C. Superior electrochemical properties of Co3O4 yolk-shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chem. Commun. 2013, 49, 5678–5680.CrossRefGoogle Scholar
  24. [24]
    Kuai, L.; Geng, J.; Chen, C. Y.; Kan, E. J.; Liu, Y. D.; Wang, Q.; Geng, B. Y. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2014, 53, 7547–7551.CrossRefGoogle Scholar
  25. [25]
    Wang, Q.; Geng, J.; Yuan, C.; Kuai, L.; Geng, B. Y. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochim. Acta 2016, 212, 41–46.CrossRefGoogle Scholar
  26. [26]
    Li, T.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Hu, Q. Y.; Peng, W. J. Synthesis of nanoparticles-assembled Co3O4 microspheres as anodes for Li-ion batteries by spray pyrolysis of CoCl2 solution. Electrochim. Acta 2016, 209, 456–463.CrossRefGoogle Scholar
  27. [27]
    Zhang, X. X.; Xie, Q. S.; Yue, G. H.; Zhang, Y.; Zhang, X. Q.; Lu, A. L.; Peng, D. L. A novel hierarchical network-like Co3O4 anode material for lithium batteries. Electrochim. Acta 2013, 111, 746–754.CrossRefGoogle Scholar
  28. [28]
    Hu, Y. S.; Guo, Y. G.; Sigle, W.; Hore, S.; Balaya, P.; Maier, J. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater. 2006, 5, 713–717.CrossRefGoogle Scholar
  29. [29]
    Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.CrossRefGoogle Scholar
  30. [30]
    Feng, Y.; Yu, X. Y.; Paik, U. Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem. Commun. 2016, 52, 6269–6272.CrossRefGoogle Scholar
  31. [31]
    Su, P. P.; Liao, S. C.; Rong, F.; Wang, F. Q.; Chen, J.; Li, C.; Yang, Q. H. Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2014, 2, 17408–17414.CrossRefGoogle Scholar
  32. [32]
    Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.CrossRefGoogle Scholar
  33. [33]
    Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G.. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.CrossRefGoogle Scholar
  34. [34]
    Griffith, K. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. J. Am. Chem. Soc. 2016, 138, 8888–8899.CrossRefGoogle Scholar
  35. [35]
    Tian, D.; Zhou, X. L.; Zhang, Y. H.; Zhou, Z.; Bu, X. H. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg. Chem. 2015, 54, 8159–8161.CrossRefGoogle Scholar
  36. [36]
    Chen, M. H.; Xia, X. H.; Yin, J. H.; Chen, Q. G. Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim. Acta 2015, 160, 15–21.CrossRefGoogle Scholar
  37. [37]
    Wang, D. L.; Yu, Y. C.; He, H.; Wang, J.; Zhou, W. D.; Abruña, H. D. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 2015, 9, 1775–1781.CrossRefGoogle Scholar
  38. [38]
    Huang, G. Y.; Xu, S. M.; Lu, S. S.; Li, L. Y.; Sun, H. Y. Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries. Electrochim. Acta 2014, 135, 420–427.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Haoran Du
    • 1
  • Kuangfu Huang
    • 1
  • Min Li
    • 1
  • Yuanyuan Xia
    • 1
  • Yixuan Sun
    • 1
  • Mengkang Yu
    • 1
  • Baoyou Geng
    • 1
    Email author
  1. 1.College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano-Science and TechnologyAnhui Normal UniversityWuhuChina

Personalised recommendations