Nano Research

, Volume 10, Issue 12, pp 4221–4231 | Cite as

Suppressed oxygen extraction and degradation of LiNi x Mn y Co z O2 cathodes at high charge cut-off voltages

  • Jianming Zheng
  • Pengfei Yan
  • Jiandong Zhang
  • Mark H. Engelhard
  • Zihua Zhu
  • Bryant J. Polzin
  • Steve Trask
  • Jie Xiao
  • Chongmin WangEmail author
  • Jiguang ZhangEmail author
Research Article


The capacity degradation mechanism in lithium nickel–manganese–cobalt oxide (NMC) cathodes (LiNi1/3Mn1/3Co1/3O2 (NMC333) and LiNi0.4Mn0.4Co0.2O2 (NMC442)) during high-voltage (cut-off of 4.8 V) operation has been investigated. In contrast to NMC442, NMC333 exhibits rapid structural changes including severe micro-crack formation and phase transformation from a layered to a disordered rock-salt structure, as well as interfacial degradation during high-voltage cycling, leading to a rapid increase of the electrode resistance and fast capacity decline. The fundamental reason behind the poor structural and interfacial stability of NMC333 was found to be correlated to its high Co content and the significant overlap between the Co3+/4+ t2g and O2− 2p bands, resulting in oxygen removal and consequent structural changes at high voltages. In addition, oxidation of the electrolyte solvents by the extracted oxygen species generates acidic species, which then attack the electrode surface and form highly resistive LiF. These findings highlight that both the structural and interfacial stability should be taken into account when tailoring cathode materials for high voltage battery systems.


layered structure high-voltage cycling structural stability interfacial stability material composition Li-ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 18769, under the Advanced Battery Materials Research (BMR) program. The STEM/EELS/ToF-SIMS/XPS characterizations were carried out in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830.

Supplementary material

12274_2017_1761_MOESM1_ESM.pdf (2.8 mb)
Suppressed oxygen extraction and degradation of LiNi x Mn y Co z O2 cathodes at high charge cut-off voltages


  1. [1]
    Liu, W.; Oh, P.; Liu, X. E.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.CrossRefGoogle Scholar
  2. [2]
    Manthiram, A.; Knight, J. C.; Myung, S. T.; Oh, S. M.; Sun, Y. K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 2016, 6, 1501010.CrossRefGoogle Scholar
  3. [3]
    Kim, H.; Kim, M. G.; Jeong, H. Y.; Nam, H.; Cho, J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2cathode material: Nanoscale surface treatment of primary particles. Nano Lett. 2015, 15, 2111–2119.CrossRefGoogle Scholar
  4. [4]
    Lee, E.-J.; Chen, Z. H.; Noh, H.-J.; Nam, S. C.; Kang, S.; Kim, D. H.; Amine, K.; Sun, Y.-K. Development of microstrain in aged lithium transition metal oxides. Nano Lett. 2014, 14, 4873–4880.CrossRefGoogle Scholar
  5. [5]
    Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.CrossRefGoogle Scholar
  6. [6]
    Yan, P. F.; Zheng, J. M.; Zhang, J.-G.; Wang, C. M. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode. Nano Lett. 2017, 17, 3946–3951.CrossRefGoogle Scholar
  7. [7]
    Jung, S.-K.; Gwon, H.; Hong, J.; Park, K.-Y.; Seo, D.-H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 2014, 4, 1300787.CrossRefGoogle Scholar
  8. [8]
    Ohzuku, T.; Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 2001, 30, 642–643.CrossRefGoogle Scholar
  9. [9]
    Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 2008, 1, 621–638.CrossRefGoogle Scholar
  10. [10]
    Arunkumar, T. A.; Wu, Y.; Manthiram, A. Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2−Li[M]O2 (M = Mn0.5–yNi0.5–yCo2y and Ni1–yCoy) solid solutions. Chem. Mater. 2007, 19, 3067–3073.CrossRefGoogle Scholar
  11. [11]
    Chebiam, R. V.; Prado, F.; Manthiram, A. Soft chemistry synthesis and characterization of layered Li1–xNi1–yCoyO2−δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1). Chem. Mater. 2001, 13, 2951–2957.CrossRefGoogle Scholar
  12. [12]
    Venkatraman, S.; Shin, Y.; Manthiram, A. Phase relationships and structural and chemical stabilities of charged Li1−xCoO2−δ and Li1−xNi0.85Co0.15O2−δ Cathodes. Electrochem. Solid-State Lett. 2003, 6, A9–A12.CrossRefGoogle Scholar
  13. [13]
    Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698.CrossRefGoogle Scholar
  14. [14]
    Zheng, J. M.; Zhang, Z. R.; Wu, X. B.; Dong, Z. X.; Zhu, Z.; Yang, Y. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J. Electrochem. Soc. 2008, 155, A775–A782.CrossRefGoogle Scholar
  15. [15]
    Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y. The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0 < x ≤ 1) as a cathode material in lithium ion batteries. Solid State Ionics 2006, 177, 1509–1516.CrossRefGoogle Scholar
  16. [16]
    Xia, H.; Wang, H. L.; Xiao, W.; Lu, L.; Lai, M. O. Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries. J. Alloy Compd. 2009, 480, 696–701.CrossRefGoogle Scholar
  17. [17]
    Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.Google Scholar
  18. [18]
    Xu, B.; Fell, C. R.; Chi, M. F.; Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 2011, 4, 2223–2233.CrossRefGoogle Scholar
  19. [19]
    Zheng, J. M.; Xu, P. H.; Gu, M.; Xiao, J.; Browning, N. D.; Yan, P. F.; Wang, C. M.; Zhang, J.-G. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 2015, 27, 1381–1390.CrossRefGoogle Scholar
  20. [20]
    Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.CrossRefGoogle Scholar
  21. [21]
    Li, J.; Zheng, J. M.; Yang, Y. Studies on storage characteristics of LiNi0.4Co0.2Mn0.4O2 as cathode materials in lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A427–A432.CrossRefGoogle Scholar
  22. [22]
    Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 2012, 11, 942–947.CrossRefGoogle Scholar
  23. [23]
    Hong, Y. S.; Park, Y. J.; Ryu, K. S.; Chang, S. H. Charge/discharge behavior of Li[Ni0.20Li0.20Mn0.60]O2 and Li[Co0.20Li0.27Mn0.53]O2 cathode materials in lithium secondary batteries. Solid State Ionics 2005, 176, 1035–1042.CrossRefGoogle Scholar
  24. [24]
    Varela, M.; Oxley, M. P.; Luo, W.; Tao, J.; Watanabe, M.; Lupini, A. R.; Pantelides, S. T.; Pennycook, S. J. Atomicresolution imaging of oxidation states in manganites. Phys. Rev. B 2009, 79, 085117.CrossRefGoogle Scholar
  25. [25]
    Xia, Y. Y.; Zhou, Y. H.; Yoshio, M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J. Electrochem. Soc. 1997, 144, 2593–2600.CrossRefGoogle Scholar
  26. [26]
    Zheng, J. M.; Gu, M.; Xiao, J.; Zuo, P. J.; Wang, C. M.; Zhang, J. G. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 2013, 13, 3824–3830.CrossRefGoogle Scholar
  27. [27]
    Zheng, J. M.; Wu, X. B.; Yang, Y. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim. Acta 2013, 105, 200–208.CrossRefGoogle Scholar
  28. [28]
    Robertson, A. D.; Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 2003, 15, 1984–1992.CrossRefGoogle Scholar
  29. [29]
    Li, J. G.; Wang, L.; Zhang, Q.; He, X. M. Synthesis and characterization of LiNi0.6Mn0.4−xCoxO2 as cathode materials for Li-ion batteries. J. Power Sources 2009, 189, 28–33.CrossRefGoogle Scholar
  30. [30]
    Zuo, X. X.; Fan, C. J.; Liu, J. S.; Xiao, X.; Wu, J. H.; Nan, J. M. Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells. J. Power Sources 2013, 229, 308–312.CrossRefGoogle Scholar
  31. [31]
    Wang, D.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Chen, X.; Zheng, X. B.; Xu, Y.; Ru, J. J. Multifunctional Li2O-2B2O3 coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim. Acta 2015, 174, 1225–1233.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jianming Zheng
    • 1
  • Pengfei Yan
    • 2
  • Jiandong Zhang
    • 2
  • Mark H. Engelhard
    • 2
  • Zihua Zhu
    • 2
  • Bryant J. Polzin
    • 3
  • Steve Trask
    • 3
  • Jie Xiao
    • 1
  • Chongmin Wang
    • 2
    Email author
  • Jiguang Zhang
    • 1
    Email author
  1. 1.Energy and Environment DirectoratePacific Northwest National LaboratoryRichlandUSA
  2. 2.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA
  3. 3.Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations