Nano Research

, Volume 11, Issue 3, pp 1437–1446 | Cite as

Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries

  • Wenqiang Cao
  • Wenzhong WangEmail author
  • Honglong Shi
  • Jun Wang
  • Maosheng Cao
  • Yujie Liang
  • Min Zhu
Research Article


In this work, we rationally design a high-capacity electrode based on three-dimensional (3D) hierarchical Co3O4 flower-like architectures with a mesocrystal nanostructure. The specific combination of the micro-sized 3D hierarchical architecture and the mesocrystal structure with a high porosity and single crystal-like nature can address the capacity fading and cycling stability as presented in many conversion electrodes for lithium-ion batteries. The hierarchical 3D flower-like Co3O4 architecture accommodates the volume change and mitigates mechanical stress during the lithiation–delithiation processes, and the mesocrystal structure provides extra lithium-ion storage and electron/ion transport paths. The achieved hierarchical 3D Co3O4 flower-like architectures with a mesocrystal nanostructure exhibit a high reversible capacity of 920 mA·h·g−1 after 800 cycles at 1.12 C (1 C = 890 mA·h·g−1), improved rate performance, and cycling stability. The finding in this work offers a new perspective for designing advanced and long-lived lithium-ion batteries.


Co3O4 three-dimensional anode materials lithium-ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 11374377, 61575225, 11404414, 11074312 and 11474174), and the Undergraduate Research Training Program of Minzu University of China (Nos. GCCX2016110009 and GCCX2016110010).


  1. [1]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  2. [2]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  3. [3]
    Sun, H. T.; Xin, G. Q.; Hu, T.; Yu, M. P.; Shao, D. L.; Sun, X.; Lian, J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 2014, 5, 4526.CrossRefGoogle Scholar
  4. [4]
    Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  5. [5]
    Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.CrossRefGoogle Scholar
  6. [6]
    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.CrossRefGoogle Scholar
  7. [7]
    Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S. M.; Sun, X. G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661–4666.CrossRefGoogle Scholar
  8. [8]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  9. [9]
    Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.CrossRefGoogle Scholar
  10. [10]
    Zhou, Y.; Candelaria, S. L.; Liu, Q.; Uchaker, E.; Cao, G. Z. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy 2015, 12, 567–577.CrossRefGoogle Scholar
  11. [11]
    Uchake, E.; Cao, G. Z. Mesocrystals as electrode materials for lithium-ion batteries. Nano Today 2014, 9, 499–524.CrossRefGoogle Scholar
  12. [12]
    Wang, F.; Lu, C. C.; Qin, Y. F.; Liang, C. C.; Zhao, M. S.; Yang, S. C.; Sun, Z. B.; Song, X. P. Solid state coalescence growth and electrochemical performance of plate-like Co3O4 mesocrystals as anode materials for lithium-ion batteries. J. Power Sources 2013, 235, 67–73.CrossRefGoogle Scholar
  13. [13]
    Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.CrossRefGoogle Scholar
  14. [14]
    Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.CrossRefGoogle Scholar
  15. [15]
    Hu, T.; Xin, G. Q.; Sun, H. T.; Sun, X.; Yu, M. P.; Liu, C. S.; Lian, J. Electrospray deposition of a Co3O4 nanoparticlesgraphene composite for a binder-free lithium ion battery electrode. RSC Adv. 2014, 4, 1521–1525.CrossRefGoogle Scholar
  16. [16]
    Chen, S.; Wang, M.; Ye, J. F.; Cai, J. G.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Res. 2013, 6, 243–252.CrossRefGoogle Scholar
  17. [17]
    Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.CrossRefGoogle Scholar
  18. [18]
    Tan, G. Q.; Wu, F.; Yuan, Y. F.; Chen, R. J.; Zhao, T.; Yao, Y.; Qian, J.; Liu, J. R.; Ye, Y. S.; Shahbazian-Yassar, R. et al. Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 2016, 7, 11774.CrossRefGoogle Scholar
  19. [19]
    Shen, Z.; Hu, Y.; Chen, Y. L.; Zhang, X. W.; Wang, K. H.; Chen, R. Z. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J. Power Sources 2015, 278, 660–667.CrossRefGoogle Scholar
  20. [20]
    Meng, J. S.; Niu, C. J.; Liu, X.; Liu, Z.; Chen, H. L.; Wang, X. P.; Li, J. T.; Chen, W.; Guo, X. F.; Mai, L. Q. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Res. 2016, 9, 2445–2457.CrossRefGoogle Scholar
  21. [21]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Selfsupported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.CrossRefGoogle Scholar
  22. [22]
    Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 2013, 13, 4404–4409.CrossRefGoogle Scholar
  23. [23]
    Wang, C.; Wang, F. X.; Zhao, Y. J.; Li, Y. H.; Yue, Q.; Liu, Y. P.; Liu, Y.; Elzatahry, A. A.; Al-Enizi, A.; Wu, Y. P. et al. Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Res. 2016, 9, 165–173.CrossRefGoogle Scholar
  24. [24]
    Aurbach, D. Electrode-solution interactions in Li-ion batteries: A short summary and new insights. J. Power Sources 2003, 119–121, 497–503.CrossRefGoogle Scholar
  25. [25]
    Koo, B.; Xiong, H.; Slater, M. D.; Prakapenka, V. B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012, 12, 2429–2435.CrossRefGoogle Scholar
  26. [26]
    Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.CrossRefGoogle Scholar
  27. [27]
    Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998–3010.CrossRefGoogle Scholar
  28. [28]
    Zhu, J. X.; Yin, Z. Y.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Y. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energ. Environ. Sci. 2013, 6, 987–993.CrossRefGoogle Scholar
  29. [29]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  30. [30]
    Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.CrossRefGoogle Scholar
  31. [31]
    Ge, D. H.; Geng, H. B.; Wang, J. Q.; Zheng, J. W.; Pan, Y.; Cao, X. Q.; Gu, H. W. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 2014, 6, 9689–9694.CrossRefGoogle Scholar
  32. [32]
    Chen, M. H.; Xia, X. H.; Yin, J. H.; Chen, Q. G. Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim. Acta 2015, 160, 15–21.CrossRefGoogle Scholar
  33. [33]
    Mujtaba, J.; Sun, H. Y.; Huang, G. Y.; Mølhave, K.; Liu, Y. G.; Zhao, Y. Y.; Wang, X.; Xu, S. M.; Zhu, J. Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials. Sci. Rep. 2016, 6, 20592.CrossRefGoogle Scholar
  34. [34]
    Su, D. W.; Xie, X. Q.; Munroe, P.; Dou, S. X.; Wang, G. X. Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Sci. Rep. 2014, 4, 6519.CrossRefGoogle Scholar
  35. [35]
    Li, Z. P.; Yu, X. Y.; Paik, U. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. J. Power Sources 2016, 310, 41–46.CrossRefGoogle Scholar
  36. [36]
    Wang, Y.; Wang, B. F.; Xiao, F.; Huang, Z. G.; Wang, Y. J.; Richardson, C.; Chen, Z. X.; Jiao, L. F.; Yuan, H. T. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. J. Power Sources 2015, 298, 203–208.CrossRefGoogle Scholar
  37. [37]
    Wang, X. L.; Zhang, J. M.; Kong, X.; Huang, X.; Shi, B. Increasing rigidness of carbon coating for improvement of electrochemical performances of Co3O4 in Li-ion batteries. Carbon 2016, 104, 1–9.CrossRefGoogle Scholar
  38. [38]
    Tan, Y. L.; Gao, Q. M.; Li, Z. Y.; Tian, W. Q.; Qian, W. W.; Yang, C. X.; Zhang, H. Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material. Sci. Rep. 2016, 6, 26460.CrossRefGoogle Scholar
  39. [39]
    Wang, T. X.; Cölfen, H.; Antonietti, M. Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc. 2005, 127, 3246–3247.CrossRefGoogle Scholar
  40. [40]
    Hou, C.; Lang, X. Y.; Han, G. F.; Li, Y. Q.; Zhao, L.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Lian, J. S. et al. Integrated solid/nanoporous copper/oxide hybrid bulk electrodes for high-performance lithium-ion batteries. Sci. Rep. 2013, 3, 2878.CrossRefGoogle Scholar
  41. [41]
    Huang, G. Y.; Xu, S. M.; Lu, S. S.; Li, L. Y.; Sun, H. Y. Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243.CrossRefGoogle Scholar
  42. [42]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Wenqiang Cao
    • 1
  • Wenzhong Wang
    • 1
    Email author
  • Honglong Shi
    • 1
  • Jun Wang
    • 2
  • Maosheng Cao
    • 3
  • Yujie Liang
    • 1
  • Min Zhu
    • 1
  1. 1.School of ScienceMinzu University of ChinaBeijingChina
  2. 2.Faculty of SciencesNingbo UniversityNingboChina
  3. 3.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations