Nano Research

, Volume 11, Issue 3, pp 1379–1388 | Cite as

Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots

  • Xiao-Yuan Liu
  • Guozhen Zhang
  • Hao Chen
  • Haowen Li
  • Jun Jiang
  • Yi-Tao LongEmail author
  • Zhijun NingEmail author
Research Article


The development of photocatalysts that can effectively harvest visible light is essential for advances in high-efficiency solar-driven hydrogen generation. Herein, we synthesized water soluble CuInS2 (CIS) and Cu-In-Zn-S (CIZS) quantum dots (QDs) by using one-pot aqueous method. The CIZS QDs are well passivated by glutathione ligands and are highly stable in aqueous conditions. We subsequently applied these QDs as a light harvesting material for photocatalytic hydrogen generation. Unlike most small band gap materials that show extremely low efficiency, these new QDs display remarkable energy conversion efficiency in the visible and near-infrared regions. The external quantum efficiency at 650 nm is ∼1.5%, which, to the best of our knowledge, is the highest value achieved until now in the near-infrared region.


quantum dots photocatalysis hydrogen generation surface defect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the start-up funding from ShanghaiTech University, the Young 1000 Talents Program, the National Natural Science Foundation of China (Nos. U1632118, 21571129, and 21571129), the National Basic Research Program of China (Nos. 2016YFA0204000 and 2013CB733700), Science and Technology Commission of Shanghai Municipality (Nos. 16JC1402100 and 16520720700) and the National Natural Science Foundation of China for Creative Research Groups (No. 21421004). We thank Dr. Yanyan Jia at the testing center at School of Physical Science and Technology, Protein center.

Supplementary material

12274_2017_1752_MOESM1_ESM.pdf (1.2 mb)
Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots


  1. [1]
    Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao. S. S. Semiconductorbased photocatalytic hydrongen generation. Chem. Rev. 2010, 110, 6503–6570.CrossRefGoogle Scholar
  2. [2]
    Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 2009, 42, 1966–1973.CrossRefGoogle Scholar
  3. [3]
    Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177–2185.CrossRefGoogle Scholar
  4. [4]
    Han, Z. J.; Eisenberg, R.; Fuel from water: The photochemical generation of hydrogen from water. Acc. Chem. Res. 2014, 47, 2537–2544.CrossRefGoogle Scholar
  5. [5]
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefGoogle Scholar
  6. [6]
    Zhuang, T.-T.; Liu, Y.; Sun, M.; Jiang, S.-L.; Zhang, M.-W.; Wang, X.-C.; Zhang, Q.; Jiang, J.; Yu, S.-H. A unique ternary semiconductor–(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11495–11500.CrossRefGoogle Scholar
  7. [7]
    Wang, L.; Fernández-Terán, R.; Zhang, L.; Fernandes, D. L. A.; Tian, L.; Chen, H.; Tian, H. N. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 12306–12310.CrossRefGoogle Scholar
  8. [8]
    Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.CrossRefGoogle Scholar
  9. [9]
    Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.CrossRefGoogle Scholar
  10. [10]
    Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.CrossRefGoogle Scholar
  11. [11]
    Brown, K. A.; Wilker, M. B.; Boehm, M.; Dukovic, G.; King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 2012, 134, 5627–5636.CrossRefGoogle Scholar
  12. [12]
    Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.CrossRefGoogle Scholar
  13. [13]
    Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890.CrossRefGoogle Scholar
  14. [14]
    Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 2010, 132, 9672–9680.CrossRefGoogle Scholar
  15. [15]
    Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.CrossRefGoogle Scholar
  16. [16]
    Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. R. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351.CrossRefGoogle Scholar
  17. [17]
    Cao, Y. T.; Geng, W.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Liu, L. M.; Wu, L.-Z.; Tung, C.-H.; Yin, Y. D.; Zhang, T. R. Thiolate-mediated photoinduced synthesis of ultrafine Ag2S quantum dots from silver nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 14952–14957.CrossRefGoogle Scholar
  18. [18]
    Han, K.; Wang, M.; Zhang, S.; Wu, S.; Yang, Y.; Sun, L. C. Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems. Chem. Commun. 2015, 51, 7008–7011.CrossRefGoogle Scholar
  19. [19]
    Das, A.; Han, Z. J.; Haghighi, M. G.; Eisenberg. R. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 16716–16723.CrossRefGoogle Scholar
  20. [20]
    Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water. Nanoscale 2015, 7, 5767–5775.CrossRefGoogle Scholar
  21. [21]
    Wang, P.; Zhang, J.; He, H. L.; Xu. X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale 2014, 6, 13470–13475.CrossRefGoogle Scholar
  22. [22]
    Li, C.-B.; Li, Z.-J.; Yu, S.; Wang, G.-X.; Wang, F.; Meng, Q.-Y.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Interfacedirected assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ. Sci. 2013, 6, 2597–2602.CrossRefGoogle Scholar
  23. [23]
    Wang, F.; Liang, W. J.; Jian, J. X.; Li, C. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem., Int. Ed. 2013, 52, 8134–8138.CrossRefGoogle Scholar
  24. [24]
    Jian, J. X.; Liu, Q.; Li, Z. J.; Wang, F.; Li, X. B.; Li, C. B.; Liu, B.; Meng, Q. Y.; Chen, B.; Feng, K. et al. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat. Commun. 2013, 4, 2695.CrossRefGoogle Scholar
  25. [25]
    Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc 2012, 134, 16472–16475.CrossRefGoogle Scholar
  26. [26]
    Liu, X. Y.; Chen, H.; Wang, R. L.; Shang, Y. Q.; Zhang, Q.; Li, W.; Zhang, G. Z.; Su, J.; Dinh, C. T.; de Arquer, F. P. G. et al. 0D-2D quantum dot: Metal dichalcogenide nanocomposite photocatalyst achieves efficient hydrogen generation. Adv. Mater. 2017, 29, 1605646.CrossRefGoogle Scholar
  27. [27]
    Li, L.; Daou, T. J.; Texier, I.; Chi, T. T. K.; Liem, N. Q.; Reiss, P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: Cadmium-free quantum dots for in vivo imaging. Chem. Mater. 2009, 21, 2422–2429.CrossRefGoogle Scholar
  28. [28]
    Speranskaya, E. S.; Beloglazova, N. V.; Abé, S.; Aubert, T.; Smet, P. F.; Poelman, D.; Goryacheva, I. Y.; De Saeger, S.; Hens, Z. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 2014, 30, 7567–7575.CrossRefGoogle Scholar
  29. [29]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  30. [30]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  31. [31]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  32. [32]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  33. [33]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  34. [34]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  35. [35]
    Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.CrossRefGoogle Scholar
  36. [36]
    Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221–12237.CrossRefGoogle Scholar
  37. [37]
    Torimoto, T.; Kameyama, T.; Kuwabata, S. Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J. Phys. Chem. Lett. 2014, 5, 336–347.CrossRefGoogle Scholar
  38. [38]
    Park, J.; Kim, S.-W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J. Mater. Chem. 2011, 21, 3745–3750.CrossRefGoogle Scholar
  39. [39]
    Zhang, A. D.; Dong, C. Q.; Li, L.; Yin, J. J.; Liu, H.; Huang, X. Y.; Ren, J. C. Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approach. Sci. Rep. 2015, 5, 15227.CrossRefGoogle Scholar
  40. [40]
    Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 2010, 4, 5253–5262.CrossRefGoogle Scholar
  41. [41]
    De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1–xInS2 nanocrystals by partial cation exchange. Chem. Mater. 2012, 24, 2400–2406.CrossRefGoogle Scholar
  42. [42]
    Zhang, Y. H.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 2012, 6, 9777–9789.Google Scholar
  43. [43]
    Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.CrossRefGoogle Scholar
  44. [44]
    Liu, X.; Zheng, H. F.; Sun, Z. J.; Han, A.; Du, P. W. Earth-abundant copper-based bifunctional electrocatalyst for both catalytic hydrogen production and water oxidation. ACS Catal. 2015, 5, 1530–1538.CrossRefGoogle Scholar
  45. [45]
    Hu, Y.; Gao, X. H.; Yu, L.; Wang, Y. R.; Ning, J. Q.; Xu, S. J.; Lou, X. W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem., Int. Ed. 2013, 52, 5636–5639.CrossRefGoogle Scholar
  46. [46]
    Susumu, K.; Oh, E.; Delehanty, J. B.; Blanco-Canosa, J. B.; Johnson, B. J.; Jain, V.; Hervey, W. J.; Algar, W. R.; Boeneman, K.; Dawson, P. E. et al. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J. Am. Chem. Soc. 2011, 133, 9480–9496.CrossRefGoogle Scholar
  47. [47]
    Wang, W. T.; Ji, X.; Kapur, A.; Zhang, C. Q.; Mattoussi, H. A multifunctional polymer combining the imidazole and zwitterion motifs as a biocompatible compact coating for quantum dots. J. Am. Chem. Soc. 2015, 137, 14158–14172.CrossRefGoogle Scholar
  48. [48]
    Rao, P. H.; Yao, W.; Li, Z. C.; Kong, L.; Zhang, W. Q.; Li, L. Highly stable CuInS2@ZnS: Al core@shell quantum dots: The role of aluminium self-passivation. Chem. Commun. 2015, 51, 8757–8760.CrossRefGoogle Scholar
  49. [49]
    Xu, M.; Zai, J. T.; Yuan, Y. P.; Qian, X. F. Band gap-tunable (CuIn)xZn2(1−x)S2 solid solutions: Preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals. J. Mater. Chem. 2012, 22, 23929–23934.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  2. 2.Key Laboratory for Advanced Materials & School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina
  3. 3.School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD)University of Science and Technology of China (USTC)HefeiChina

Personalised recommendations