Nano Research

, Volume 11, Issue 3, pp 1369–1378 | Cite as

Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion

  • Shenghong Yang
  • Xiaohan Sun
  • Zhaoyan Wang
  • Xiayan WangEmail author
  • Guangsheng Guo
  • Qiaosheng PuEmail author
Research Article


An anomalous enhancement of fluorescence of carbon dots (CDs) was observed via lanthanum (La) doping. La-doped CDs (La-CDs) were prepared through microwave pyrolysis within 4 min. With La3+ doping, the emission band shifted from blue to green although La3+ is non-fluorescent. The quantum yield and fluorescence lifetime improved by about 20% and 35%, respectively. All experiment results indicate that La3+ doping is an effective way to tune fluorescence and improve the performance of CDs. Another unique attribute of La-CDs is high sensitivity to Fe3+. The La-CD-based fluorescence probe was established and used for sensitive and selective detection of Fe3+ with a limit of detection of 91 nmol/L. The proposed fluorescence probe also was successfully employed to visualize intracellular Fe3+ in live HeLa cells through cell imaging. It was also shown that yttrium exhibited the same fluorescence enhancement effect as La. The results may provide a new route for preparing CDs with special properties.


rear earth doping carbon dots fluorescence tuning ferric ion cell imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21375005, 21575054 and 21527808).

Supplementary material

12274_2017_1751_MOESM1_ESM.pdf (1.3 mb)
Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion


  1. [1]
    Wolfbeis, O. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.CrossRefGoogle Scholar
  2. [2]
    Yao, J.; Yang, M.; Duan, Y. X. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178.CrossRefGoogle Scholar
  3. [3]
    Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Luminescent films for chemo- and biosensing. Chem. Soc. Rev. 2015, 44, 6981–7009.CrossRefGoogle Scholar
  4. [4]
    Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.CrossRefGoogle Scholar
  5. [5]
    Su, L. T.; Karuturi, S. K.; Luo, J. S.; Liu, L. J.; Liu, X. F.; Guo, J.; Sum, T. C.; Deng, R. R.; Fan, H. J.; Liu, X. G. et al. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Adv. Mater. 2013, 25, 1603–1607.CrossRefGoogle Scholar
  6. [6]
    Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.CrossRefGoogle Scholar
  7. [7]
    Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens. W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.CrossRefGoogle Scholar
  8. [8]
    Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.CrossRefGoogle Scholar
  9. [9]
    Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.CrossRefGoogle Scholar
  10. [10]
    Yan, Y. H.; Yu, H.; Zhang, K.; Sun, M. T.; Zhang, Y. J.; Wang, X. K.; Wang, S. H. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 2016, 9, 2088–2096.CrossRefGoogle Scholar
  11. [11]
    Wang, N.; Fan, H.; Sun, J. C.; Han, Z. W.; Dong, J.; Ai, S. Y. Fluorine-doped carbon nitride quantum dots: Ethylene glycol-assisted synthesis, fluorescent properties, and their application for bacterial imaging. Carbon 2016, 109, 141–148.CrossRefGoogle Scholar
  12. [12]
    Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.CrossRefGoogle Scholar
  13. [13]
    Kim, S.; Choi, Y.; Park, G.; Won, C.; Park, Y. J.; Lee, Y.; Kim, B. S.; Min, D. H. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 2017, 10, 503–519.CrossRefGoogle Scholar
  14. [14]
    Guo, X.; Wang, C. F.; Yu, Z. Y.; Chen, L.; Chen, S. Facile access to versatile fluorescent carbon dots toward lightemitting diodes. Chem. Commun. 2012, 48, 2692–2694.CrossRefGoogle Scholar
  15. [15]
    Hu, S. L.; Chang, Q.; Lin, K.; Yang, J. L. Tailoring surface charge distribution of carbon dots through heteroatoms for enhanced visible-light photocatalytic activity. Carbon 2016, 105, 484–489.CrossRefGoogle Scholar
  16. [16]
    Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L. G.; Li, D.; Tan, H. Q.; Zhao, Z.; Xie, Z. G.; Sun, Z. C. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277.CrossRefGoogle Scholar
  17. [17]
    Singh, S.; Mishra, A.; Kumari, R.; Sinha, K. K.; Singh, M. K.; Das, P. Carbon dots assisted formation of DNA hydrogel for sustained release of drug. Carbon 2017, 114, 169–176.CrossRefGoogle Scholar
  18. [18]
    Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.CrossRefGoogle Scholar
  19. [19]
    Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.CrossRefGoogle Scholar
  20. [20]
    Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F. Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.CrossRefGoogle Scholar
  21. [21]
    Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X. J.; Chen, S. W. Nanosized carbon particles from natural gas soot. Chem. Mater. 2009, 21, 2803–2809.CrossRefGoogle Scholar
  22. [22]
    Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5116–5118.Google Scholar
  23. [23]
    Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.CrossRefGoogle Scholar
  24. [24]
    Wang, Z. G.; Fu, B. S.; Zou, S. W.; Duan, B.; Chang, C. Y.; Yang, B.; Zhou, X.; Zhang, L. N. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res. 2016, 9, 214–223.CrossRefGoogle Scholar
  25. [25]
    Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.CrossRefGoogle Scholar
  26. [26]
    Liu, Y.; Xiao, N.; Gong, N. Q.; Wang, H.; Shi, X.; Gu, W.; Ye, L. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 2014, 68, 258–264.CrossRefGoogle Scholar
  27. [27]
    Xu, M. H.; He, G. L.; Li, Z. H.; He, F. J.; Gao, F.; Su, Y. J.; Zhang, L. Y.; Yang, Z.; Zhang, Y. F. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 2014, 6, 10307–10315.CrossRefGoogle Scholar
  28. [28]
    Zhu, Y. J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555.CrossRefGoogle Scholar
  29. [29]
    Hens, Z. Economical routes to colloidal nanocrystals. Science 2015, 348, 1211–1212.CrossRefGoogle Scholar
  30. [30]
    Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides [CsPbX3]. Adv. Mater. 2015, 27, 7162–7167.CrossRefGoogle Scholar
  31. [31]
    Wang, W.; Li, Y. M.; Cheng, L.; Cao, Z. Q.; Liu, W. G. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J. Mater. Chem. B 2014, 2, 46–48.CrossRefGoogle Scholar
  32. [32]
    Yoo, J. M.; Kang, J. H.; Hong, B. H. Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 2015, 44, 4835–4852.CrossRefGoogle Scholar
  33. [33]
    Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 5310–5314.CrossRefGoogle Scholar
  34. [34]
    Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521.CrossRefGoogle Scholar
  35. [35]
    Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreeprasad, T. S.; Zhao, P.; Yue, Z. Q.; Li, N. Heteroatomdoped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219.CrossRefGoogle Scholar
  36. [36]
    Song, Z. Q.; Quan, F. Y.; Xu, Y. H.; Liu, M. L.; Cui, L.; Liu, J. Q. Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 2016, 104, 169–178.CrossRefGoogle Scholar
  37. [37]
    Xu, Q.; Liu, Y.; Su, R. G.; Cai, L. L.; Li, B. F.; Zhang, Y. Y.; Zhang, L. Z.; Wang, Y. J.; Wang, Y.; Li, N. et al. Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: An integrative experimental-theoretical consideration. Nanoscale 2016, 8, 17919–17927.CrossRefGoogle Scholar
  38. [38]
    Prodi, L.; Rampazzo, E.; Rastrelli, F.; Speghini, A.; Zaccheroni, N. Imaging agents based on lanthanide doped nanoparticles. Chem. Soc. Rev. 2015, 44, 4922–4952.CrossRefGoogle Scholar
  39. [39]
    Zhong, J. Y.; Zhuang, W. D.; Xing, X. R.; Wang, L. G.; Li, Y. F.; Zheng, Y. L.; Liu, R. H.; Liu, Y. H.; Hu, Y. S. Blue-shift of spectrum and enhanced luminescent properties of YAG: Ce3+ phosphor induced by small amount of La3+ incorporation. J. Alloys Compd. 2016, 674, 93–97.CrossRefGoogle Scholar
  40. [40]
    Lu, W. B.; Qin, X. Y.; Liu, S.; Chang, G. H.; Zhang, Y. W.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 2012, 84, 5351–5357.CrossRefGoogle Scholar
  41. [41]
    Bahlakeh, G.; Ramezanzadeh, B. A detailed molecular dynamics simulation and experimental investigation on the interfacial bonding mechanism of an epoxy adhesive on carbon steel sheets decorated with a novel cerium-lanthanum nanofilm. ACS Appl. Mater. Interfaces 2017, 9, 17536–17551.CrossRefGoogle Scholar
  42. [42]
    Arenas, M. A.; García, I.; de Damborenea, J. X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths. Corros. Sci. 2004, 46, 1033–1049.CrossRefGoogle Scholar
  43. [43]
    Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.CrossRefGoogle Scholar
  44. [44]
    Dang, S.; Ma, E.; Sun, Z. M.; Zhang, H. J. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. J. Mater. Chem. 2012, 22, 16920–16926.CrossRefGoogle Scholar
  45. [45]
    Cui, X. B.; Wang, Y. L.; Liu, J.; Yang, Q. Y.; Zhang, B.; Gao, Y.; Wang, Y.; Lu, G. Y. Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions. Sens. Actuators B 2017, 242, 1272–1280.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou UniversityLanzhouChina
  2. 2.School of pharmacyLanzhou UniversityLanzhouChina
  3. 3.Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations