Nano Research

, Volume 11, Issue 3, pp 1301–1312 | Cite as

Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries

  • Gi Dae Park
  • Yun Chan KangEmail author
Research Article


Herein, hierarchically structured SnO2 microspheres are designed and synthesized as an efficient anode material for lithium-ion batteries using hollow SnO2 nanoplates. Three-dimensionally ordered macroporous (3-DOM) SnOx-C microspheres synthesized by spray pyrolysis are transformed into hierarchically structured SnO2 microspheres by a two-step post-treatment process. Sulfidation produces hierarchically structured SnS-SnS2-C microspheres comprising tin sulfide nanoplate and carbon building blocks. A subsequent oxidation process produces SnO2 microspheres from hollow SnO2 nanoplate building blocks, which are formed by Kirkendall diffusion. The discharge capacity of the hierarchically structured SnO2 microspheres at a current density of 5 A·g−1 for the 600th cycle is 404 mA·h·g−1. The hierarchically structured SnO2 microspheres have reversible discharge capacities of 609 and 158 mA·h·g−1 at current densities of 0.5 and 30 A·g−1, respectively. The ultrafine nanosheets contain empty voids that allow excellent lithium-ion storage performance, even at high current densities.


Kirkendall diffusion nanoplate tin oxide lithium-ion battery spray pyrolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2017R1A2B2008592).

Supplementary material

12274_2017_1744_MOESM1_ESM.pdf (4.7 mb)
Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries


  1. [1]
    Sun, M.-H.; Huang, S.-Z.; Chen, L.-H.; Li, Y.; Yang, X.-Y.; Yuan, Z.-Y.; Su, B.-L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.CrossRefGoogle Scholar
  2. [2]
    Li, Y.; Fu, Z.-Y.; Su, B.-L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.CrossRefGoogle Scholar
  3. [3]
    Lu, X.-F.; Huang, Z.-X.; Tong, Y.-X.; Li, G.-R. Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chem. Sci. 2016, 7, 510–517.CrossRefGoogle Scholar
  4. [4]
    Wang, X. L.; Fan, X. Y.; Li, G.; Li, M.; Xiao, X. C.; Yu, A. P.; Chen, Z. W. Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors. Carbon 2015, 93, 258–265.CrossRefGoogle Scholar
  5. [5]
    Huang, G. W.; Liu, H.; Wang, S. P.; Yang, X.; Liu, B. H.; Chen, H. Z.; Xu, M. S. Hierarchical architecture of WS2 nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution. J. Mater. Chem. A 2015, 3, 24128–24138.CrossRefGoogle Scholar
  6. [6]
    Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B 2009, 140, 319–336.CrossRefGoogle Scholar
  7. [7]
    Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 2016, 10, 11337–11343.CrossRefGoogle Scholar
  8. [8]
    Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.CrossRefGoogle Scholar
  9. [9]
    Chang, M. C. Three dimensionally ordered microstructure of polycrystalline zirconia ceramics with micro-porosity. J. Korean Ceram. Soc. 2016, 53, 50–55.CrossRefGoogle Scholar
  10. [10]
    Yu, Y.; Chen, C.-H.; Shi, Y. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 2007, 19, 993–997.CrossRefGoogle Scholar
  11. [11]
    Han, S.; Jang, B.; Kim, T.; Oh, S. M.; Hyeon, T. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 2005, 15, 1845–1850.CrossRefGoogle Scholar
  12. [12]
    Chen, M.; Wang, Z. L.; Wang, A.; Li, W. S.; Liu, X.; Fu, L. J.; Huang, W. Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries. J. Mater. Chem. A 2016, 4, 9865–9872.CrossRefGoogle Scholar
  13. [13]
    Wang, M.; Li, G. D.; Xu, H. Y.; Qian, Y. T.; Yang, J. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interfaces 2013, 5, 1003–1008.CrossRefGoogle Scholar
  14. [14]
    Wang, X.; Guan, H.; Chen, S. M.; Li, H. Q.; Zhai, T. Y.; Tang, D. M.; Bando, Y.; Golberg, D. Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. Chem. Commun. 2011, 47, 12280–12282.CrossRefGoogle Scholar
  15. [15]
    Wang, B.; Wu, H. B.; Zhang, L.; Lou, X. W. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem., Int. Ed. 2013, 52, 4165–4168.CrossRefGoogle Scholar
  16. [16]
    Wang, X. L.; Liu, Y. G.; Arandiyan, H.; Yang, H. P.; Bai, L.; Mujtaba, J.; Wang, Q. G.; Liu, S. H.; Sun, H. Y. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Appl. Surf. Sci. 2016, 389, 240–246.CrossRefGoogle Scholar
  17. [17]
    Xiao, Q. F.; Gu, M.; Yang, H.; Li, B.; Zhang, C. M.; Liu, Y.; Liu, F.; Dai, F.; Yang, L.; Liu, Z. Y. et al. Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 2015, 6, 8844.CrossRefGoogle Scholar
  18. [18]
    Zhou, X. S.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17456–17459.CrossRefGoogle Scholar
  19. [19]
    Yin, X. M.; Li, C. C.; Zhang, M.; Hao, Q. Y.; Liu, S.; Chen, L. B.; Wang, T. H. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 2010, 114, 8084–8088.CrossRefGoogle Scholar
  20. [20]
    Shen, L. F.; Yu, L.; Yu, X.-Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.CrossRefGoogle Scholar
  21. [21]
    Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenidebased nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167–6196.CrossRefGoogle Scholar
  22. [22]
    Jiang, Y. C.; Zhang, S. D.; Ji, Q.; Zhang, J.; Zhang, Z. P.; Wang, Z. Y. Ultrathin Cu7S4 nanosheets-constructed hierarchical hollow cubic cages: One-step synthesis based on kirkendall effect and catalysis property. J. Mater. Chem. A 2014, 2, 4574–4579.CrossRefGoogle Scholar
  23. [23]
    Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gösele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 2006, 5, 627–631.CrossRefGoogle Scholar
  24. [24]
    Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gösele, U. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: The basic concept. Nano Lett. 2007, 7, 993–997.CrossRefGoogle Scholar
  25. [25]
    Anderson, B. D.; Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195–12216.CrossRefGoogle Scholar
  26. [26]
    Liu, J.; Xue, D. F. Hollow nanostructured anode materials for li-ion batteries. Nanoscale Res. Lett. 2010, 5, 1525–1534.CrossRefGoogle Scholar
  27. [27]
    Park, G. D.; Lee, J.-K.; Kang, Y. C. Synthesis of uniquely structured SnO2 hollow nanoplates and their electrochemical properties for li-ion storage. Adv. Funct. Mater. 2017, 27, 1603399.CrossRefGoogle Scholar
  28. [28]
    Liu, J.; Xue, D. F. Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater. 2008, 20, 2622–2627.CrossRefGoogle Scholar
  29. [29]
    Yoon, T.-J.; Shao, H. L.; Weissleder, R.; Lee, H. Oxidation kinetics and magnetic properties of elemental iron nanoparticles. Part. Part. Syst. Charact. 2013, 30, 667–671.CrossRefGoogle Scholar
  30. [30]
    Sathish, M.; Mitani, S.; Tomai, T.; Honma, I. Ultrathin SnS2 nanoparticles on graphene nanosheets: Synthesis, characterization, and li-ion storage applications. J. Phys. Chem. C 2012, 116, 12475–12481.CrossRefGoogle Scholar
  31. [31]
    Nair, P. K.; Nair, M. T. S. XRD, XPS, optical and electrical studies on the conversion of SnS thin films to SnO2. Thin Solid Films 1994, 239, 85–92.CrossRefGoogle Scholar
  32. [32]
    Zhang, Y. J.; Lu, J.; Shen, S. L.; Xu, H. R.; Wang, Q. B. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47, 5226–5228.CrossRefGoogle Scholar
  33. [33]
    Ma, J. M.; Lei, D. N.; Mei, L.; Duan, X. C.; Li, Q. H.; Wang, T. H.; Zheng, W. J. Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm 2012, 14, 832–836.CrossRefGoogle Scholar
  34. [34]
    Gao, W. S.; Cao, M.; Yang, J.; Shen, J. S.; Huang, J.; Zhao, Y.; Sun, Y.; Wang, L. J.; Shen, Y. Controllable synthesis of SnS2/SnS nanosheets and their photoelectric properties. Mater. Lett. 2016, 180, 284–287.CrossRefGoogle Scholar
  35. [35]
    Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from twodimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.CrossRefGoogle Scholar
  36. [36]
    Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 3408–3413.CrossRefGoogle Scholar
  37. [37]
    Gedi, S.; Reddy, V. R. M.; Pejjai, B.; Jeon, C.-W.; Park, C.; Reddy, K. T. R. A facile inexpensive route for SnS thin film solar cells with SnS2 buffer. Appl. Surf. Sci. 2016, 372, 116–124.CrossRefGoogle Scholar
  38. [38]
    Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 2015, 25, 481–489.CrossRefGoogle Scholar
  39. [39]
    Zhou, X. L.; Zhou, T. F.; Hu, J. C.; Li, J. L. Controlled strategy to synthesize SnO2 decorated SnS2 nanosheets with enhanced visible light photocatalytic activity. CrystEngComm 2012, 14, 5627–5633.CrossRefGoogle Scholar
  40. [40]
    Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in li-ion batteries. Nano Res. 2013, 6, 55–64.CrossRefGoogle Scholar
  41. [41]
    Cai, J. J.; Li, Z. S.; Shen, P. K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for li-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4093–4098.CrossRefGoogle Scholar
  42. [42]
    Zhou, X. S.; Wan, L.-J.; Guo, Y.-G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.CrossRefGoogle Scholar
  43. [43]
    Liang, J.; Yu, X.-Y.; Zhou, H.; Wu, H. B.; Ding, S. J.; Lou, X. W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12803–12807.CrossRefGoogle Scholar
  44. [44]
    Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.CrossRefGoogle Scholar
  45. [45]
    Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.CrossRefGoogle Scholar
  46. [46]
    Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for li-ion batteries. ACS Nano 2015, 9, 4026–4035.CrossRefGoogle Scholar
  47. [47]
    Park, G. D.; Cho, J. S.; Kang, Y. C. Novel cobalt oxidenanobubble- decorated reduced graphene oxide sphere with superior electrochemical properties prepared by nanoscale Kirkendall diffusion process. Nano Energy 2015, 17, 17–26.CrossRefGoogle Scholar
  48. [48]
    Cho, J. S.; Hong, Y. J.; Lee, J.-H.; Kang, Y. C. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries. Nanoscale 2015, 7, 8361–8367.CrossRefGoogle Scholar
  49. [49]
    Park, G. D.; Cho, J. S.; Kang, Y. C. Multiphase and doublelayer NiFe2O4@NiO-hollow-nanosphere-decorated reduced graphene oxide composite powders prepared by spray pyrolysis applying nanoscale Kirkendall diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16842–16849.CrossRefGoogle Scholar
  50. [50]
    Cho, J. S.; Ju, H. S.; Kang, Y. C. Applying nanoscale Kirkendall diffusion for template-free, kilogram-scale production of SnO2 hollow nanospheres via spray drying system. Sci. Rep. 2016, 6, 23915.CrossRefGoogle Scholar
  51. [51]
    Cho, J. S.; Won, J. M.; Lee, J.-K.; Kang, Y. C. Design and synthesis of multiroom-structured metal compounds—Carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy 2016, 26, 466–478.CrossRefGoogle Scholar
  52. [52]
    Park, G. D.; Cho, J. S.; Kang, Y. C. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 2015, 7, 16781–16788.CrossRefGoogle Scholar
  53. [53]
    Chao, D. L.; Zhu, C. R.; Xia, X. H.; Liu, J. L.; Zhang, X.; Wang, J.; Liang, P.; Lin, J. Y.; Zhang, H.; Shen, Z. X. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565–573.CrossRefGoogle Scholar
  54. [54]
    Zhong, Y. R.; Yang, M.; Zhou, X. L.; Luo, Y. T.; Wei, J. P.; Zhou, Z. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: Rational design of MnCO3/large-area graphene composites. Adv. Mater. 2015, 27, 806–812.CrossRefGoogle Scholar
  55. [55]
    Sim, C. M.; Choi, S. H.; Kang, Y. C. Superior electrochemical properties of LiMn2O4 yolk–shell powders prepared by a simple spray pyrolysis process. Chem. Commun. 2013, 49, 5978–5980.CrossRefGoogle Scholar
  56. [56]
    Lv, D. P.; Gordin, M. L.; Yi, R.; Xu, T.; Song, J. X.; Jiang, Y.-B.; Choi, D.; Wang, D. H. GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization of Li2O along with improved rate performance. Adv. Funct. Mater. 2014, 24, 1059–1066.CrossRefGoogle Scholar
  57. [57]
    Li, X. W.; Yang, Z. B.; Fu, Y. J.; Qiao, L.; Li, D.; Yue, H. W.; He, D. Y. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery. ACS Nano 2015, 9, 1858–1867.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations