Advertisement

Nano Research

, Volume 11, Issue 3, pp 1294–1300 | Cite as

Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode

  • Qi Zhang
  • Haixia Zhong
  • Fanlu Meng
  • Di Bao
  • Xinbo Zhang
  • Xiaolin WeiEmail author
Research Article

Abstract

The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interconnected Ni(Fe)OxHy nanosheet array on a stainless steel mesh (SSNNi) as an integrated OER electrode, without using any polymer binder. Benefiting from the well-defined three-dimensional (3D) architecture with highly exposed surface area, intimate contact between the active species and conductive substrate improved electron and mass transport capacity, facilitated electrolyte penetration, and improved mechanical stability. The SSNNi electrode also has excellent OER performance, including low overpotential, a small Tafel slope, and long-term durability in the alkaline electrolyte, making it one of the most promising OER electrodes developed.

Keywords

oxygen evolution reaction three-dimensional (3D) architecture stainless steel mesh (SSNNi) Integrated oxygen evolution electrode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51472209, U1401241, 51522101, 51471075, 5163100, and 51401084), and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110061120040).

Supplementary material

12274_2017_1743_MOESM1_ESM.pdf (2.8 mb)
Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode

References

  1. [1]
    Chow, J.; Kopp, R. J.; Portney, P. R. Energy resources and global development. Science 2003, 302, 1528–1531.CrossRefGoogle Scholar
  2. [2]
    Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Cheng, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521–530.CrossRefGoogle Scholar
  3. [3]
    Wang, J.; Li, K.; Zhong, H. X.; Xu, D.; Wang, Z. L.; Jiang, Z.; Wu, Z. J.; Zhang, X. B. Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew. Chem., Int. Ed. 2015, 54, 10530–10534.CrossRefGoogle Scholar
  4. [4]
    Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.CrossRefGoogle Scholar
  5. [5]
    Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.CrossRefGoogle Scholar
  6. [6]
    Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li–O2 batteries. Nano Res. 2015, 8, 576–583.CrossRefGoogle Scholar
  7. [7]
    Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni–Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031.CrossRefGoogle Scholar
  8. [8]
    Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S. et al. A Janus cobalt-based catalytic material for electrosplitting of water. Nat. Mater. 2012, 11, 802–807.CrossRefGoogle Scholar
  9. [9]
    Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.CrossRefGoogle Scholar
  10. [10]
    Hardin, W. G.; Mefford, J. T.; Slanac, D. A.; Patel, B. B.; Wang, X. Q.; Dai, S.; Zhao, X.; Ruoff, R. S.; Johnston, K. P.; Stevenson, K. J. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. J. Chem. Mater. 2014, 26, 3368–3376.CrossRefGoogle Scholar
  11. [11]
    Zhu, Y. L.; Zhou, W.; Chen, Z. G.; Chen, Y. B.; Su, C.; Tadé, M. O.; Shao, Z. P. SrNb0.1Co0.7Fe0.2O3–δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem., Int. Ed. 2015, 54, 3897–3901.CrossRefGoogle Scholar
  12. [12]
    Chang, J. F.; Xiao, Y.; Xiao, M. L.; Ge, J. J.; Liu, C. P.; Xing, W. Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS Catal. 2015, 5, 6874–6878.CrossRefGoogle Scholar
  13. [13]
    Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.CrossRefGoogle Scholar
  14. [14]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  15. [15]
    Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.CrossRefGoogle Scholar
  16. [16]
    Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.CrossRefGoogle Scholar
  17. [17]
    Li, Y.; Zhang, L. H.; Liu, R. R.; Cao, Z.; Sun, X. M.; Liu, X. J.; Luo, J. Wo3@α-Fe2O3 heterojunction arrays with improved photoelectrochemical behavior for neutral pH water splitting. ChemCatChem 2016, 8, 2765–2770.CrossRefGoogle Scholar
  18. [18]
    Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.CrossRefGoogle Scholar
  19. [19]
    Wang, Y.; Ding, W.; Chen, S. G.; Nie, Y.; Xiong, K.; Wei, Z. D. Cobalt carbonate hydroxide/C: An efficient dual electrocatalyst for oxygen reduction/evolution reactions. Chem. Commun. 2014, 50, 15529–15532.CrossRefGoogle Scholar
  20. [20]
    Zhang, C.; Antonietti, M.; Fellinger, T. P. Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv. Funct. Mater. 2014, 24, 7655–7665.CrossRefGoogle Scholar
  21. [21]
    Zhao, A. Q.; Masa, J.; Xia, W.; Maljusch, A.; Willinger, M. G.; Clavel, G.; Xie, K. P.; Schlögl, R.; Schuhmann, W.; Muhler, M. Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J. Am. Chem. Soc. 2014, 136, 7551–7554.CrossRefGoogle Scholar
  22. [22]
    Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.CrossRefGoogle Scholar
  23. [23]
    Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 1138–1142.CrossRefGoogle Scholar
  24. [24]
    Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.CrossRefGoogle Scholar
  25. [25]
    Wang, J.; Zhong, H. X.; Qin Y. L.; Zhang, X. B. An efficient three-dimensional oxygen evolution electrode. Angew. Chem., Int. Ed. 2013, 52, 5248–5253.CrossRefGoogle Scholar
  26. [26]
    Haber, J. A.; Cai, Y.; Jung, S.; Xiang, C. X.; Mitrovic, S.; Jin, J.; Bell, A. T.; Gregoire, J. M. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 2014, 7, 682–688.CrossRefGoogle Scholar
  27. [27]
    Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.CrossRefGoogle Scholar
  28. [28]
    Schäfer, H.; Beladi-Mousavi, S. M.; Walder, L.; Wollschläger, J.; Kuschel, O.; Ichilmann, S.; Sadaf, S.; Steinhart, M.; Küpper, K.; Schneider, L. Surface oxidation of stainless steel: Oxygen evolution electrocatalysts with high catalytic activity. ACS Catal. 2015, 5, 2671–2680.CrossRefGoogle Scholar
  29. [29]
    Schäfer, H.; Sadaf, S.; Walder, L.; Kuepper, K.; Dinklage, S.; Wollschläger, J.; Schneider, L.; Steinhart, M.; Hardege J.; Daum, D. Stainless steel made to rust: A robust watersplitting catalyst with benchmark characteristics. Energy Environ. Sci. 2015, 8, 2685–2697.CrossRefGoogle Scholar
  30. [30]
    Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.CrossRefGoogle Scholar
  31. [31]
    Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni–Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680–6689.CrossRefGoogle Scholar
  32. [32]
    Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.CrossRefGoogle Scholar
  33. [33]
    Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.CrossRefGoogle Scholar
  34. [34]
    Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.CrossRefGoogle Scholar
  35. [35]
    Liu, Y. W.; Cheng, H.; Lyu, M.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.CrossRefGoogle Scholar
  36. [36]
    Leng, M.; Huang, X. L.; Xiao, W.; Ding, J.; Liu, B. H.; Du, Y. H.; Xue, J. M. Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites. Nano Energy 2017, 33, 445–452.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Qi Zhang
    • 1
    • 2
  • Haixia Zhong
    • 2
  • Fanlu Meng
    • 2
  • Di Bao
    • 2
  • Xinbo Zhang
    • 2
  • Xiaolin Wei
    • 1
    Email author
  1. 1.Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Department of PhysicsXiangtan UniversityXiangtanChina
  2. 2.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations