Advertisement

Nano Research

, Volume 11, Issue 3, pp 1285–1293 | Cite as

Graphene oxide-decorated Fe2(MoO4)3 microflowers as a promising anode for lithium and sodium storage

  • Chunhua HanEmail author
  • Xiaoji Ren
  • Qidong Li
  • Wen Luo
  • Lei Huang
  • Liang Zhou
  • Liqiang MaiEmail author
Research Article

Abstract

Mixed transition metal oxides (MTMOs) have received intensive attention as promising anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). In this work, we demonstrate a facile one-step water-bath method for the preparation of graphene oxide (GO) decorated Fe2(MoO4)3 (FMO) microflower composite (FMO/GO), in which the FMO is constructed by numerous nanosheets. The resulting FMO/GO exhibits excellent electrochemical performances in both LIBs and SIBs. As the anode material for LIBs, the FMO/GO delivers a high capacity of 1,220 mAh·g–1 at 200 mA·g–1 after 50 cycles and a capacity of 685 mAh·g–1 at a high current density of 10 A·g–1. As the anode material for SIBs, the FMO/GO shows an initial discharge capacity of 571 mAh·g–1 at 100 mA·g–1, maintaining a discharge capacity of 307 mAh·g–1 after 100 cycles. The promising performance is attributed to the good electrical transport from the intimate contact between FMO and graphene oxide. This work indicates that the FMO/GO composite is a promising anode for high-performance lithium and sodium storage.

Keywords

Fe2(MoO4)3 microflowers anode lithium and sodium storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Basic Research Program of China (No. 2013CB934103), the Programme of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (Nos. 51521001, 21673171, 51502226, and 51302203), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), and the Fundamental Research Funds for the Central Universities (WUT: 2016III001, 2016III002, 2016III006). Thanks to Prof. Zhaoping Liu and Prof. Xufeng Zhou at Ningbo Institute of Material Technology and Engineering of Chinese Academy of Sciences for providing the graphene oxide. Prof. Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (No. 201606955096).

Supplementary material

12274_2017_1742_MOESM1_ESM.pdf (1.4 mb)
Graphene oxide-decorated Fe2(MoO4)3 microflowers as a promising anode for lithium and sodium storage

References

  1. [1]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  2. [2]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  3. [3]
    Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.CrossRefGoogle Scholar
  4. [4]
    Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.CrossRefGoogle Scholar
  5. [5]
    Ren, H.; Sun, J. J.; Yu, R. B.; Yang, M.; Gu, L.; Liu, P. R.; Zhao, H. J.; Kisailus, D.; Wang, D. Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 2016, 7, 793–798.CrossRefGoogle Scholar
  6. [6]
    Zhang, J.; Ren, H.; Wang, J. Y.; Qi, J.; Yu, R. B.; Wang, D.; Liu, Y. L. Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J. Mater. Chem. A 2016, 4, 17673–17677.CrossRefGoogle Scholar
  7. [7]
    Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.CrossRefGoogle Scholar
  8. [8]
    Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multishelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.CrossRefGoogle Scholar
  9. [9]
    Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.CrossRefGoogle Scholar
  10. [10]
    Luo, C.; Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Zheng, S. Y.; Liu, Y.; Langrock, A.; Wang, C. S. Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013, 7, 8003–8010.CrossRefGoogle Scholar
  11. [11]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  12. [12]
    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.CrossRefGoogle Scholar
  13. [13]
    Liu, Y. C.; Zhang, N.; Yu, C. M.; Jiao, L. F.; Chen, J. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 2016, 16, 3321–3328.CrossRefGoogle Scholar
  14. [14]
    Li, Q. D.; Wei, Q. L.; Zuo, W. B.; Huang, L.; Luo, W.; An, Q. Y.; Pelenovich, V. O.; Mai, L. Q.; Zhang, Q. J. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160–164.CrossRefGoogle Scholar
  15. [15]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  16. [16]
    Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.CrossRefGoogle Scholar
  17. [17]
    Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.CrossRefGoogle Scholar
  18. [18]
    Pramanik, A.; Maiti, S.; Mahanty, S. Superior lithium storage properties of Fe2(MoO4)3/MWCNT composite with a nanoparticle (0D)-nanorod (1D) hetero-dimensional morphology. Chem. Eng. J. 2017, 307, 239–248.CrossRefGoogle Scholar
  19. [19]
    Wang, B.; Li, S. M.; Wu, X. Y.; Tian, W. M.; Liu, J. H.; Yu, M. Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage. J. Mater. Chem. A 2015, 3, 13691–13698.CrossRefGoogle Scholar
  20. [20]
    Yao, J. Y.; Gong, Y. J.; Yang, S. B.; Xiao, P.; Zhang, Y. H.; Keyshar, K.; Ye, G. L.; Ozden, S.; Vajtai, R.; Ajayan, P. M. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20414–20422.CrossRefGoogle Scholar
  21. [21]
    Guan, B. Q.; Sun, W. W.; Wang, Y. Carbon-coated MnMoO4 nanorod for high-performance lithium-ion batteries. Electrochim. Acta 2016, 190, 354–359.CrossRefGoogle Scholar
  22. [22]
    Chen, N.; Gao, Y.; Zhang, M. N.; Meng, X.; Wang, C. Z.; Wei, Y. J.; Du, F.; Chen, G. Electrochemical properties and sodium-storage mechanism of Ag2Mo2O7 as the anode material for sodium-ion batteries. Chem.–Eur. J. 2016, 22, 7248–7254.CrossRefGoogle Scholar
  23. [23]
    Sheng, J. Z.; Zang, H.; Tang, C. J.; An, Q. Y.; Wei, Q. L.; Zhang, G. B.; Chen, L. N.; Peng, C.; Mai, L. Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy 2016, 24, 130–138.CrossRefGoogle Scholar
  24. [24]
    Yang, T.; Zhang, H. N.; Luo, Y. Z.; Mei, L.; Guo, D.; Li, Q. H.; Wang, T. H. Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries. Electrochim. Acta 2015, 158, 327–332.CrossRefGoogle Scholar
  25. [25]
    Li, Q. D.; Wei, Q. L.; Sheng, J. Z.; Yan, M. Y.; Zhou, L.; Luo, W.; Sun, R. M.; Mai, L. Q. Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv. Sci. 2015, 2, 1500284.CrossRefGoogle Scholar
  26. [26]
    Mai, L. Q.; Wei, Q. L.; An, Q. Y.; Tian, X. C.; Zhao, Y. L.; Xu, X.; Xu, L.; Chang, L.; Zhang, Q. J. Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 2013, 25, 2969–2973.CrossRefGoogle Scholar
  27. [27]
    Yue, J. L.; Zhou, Y. N.; Shi, S. Q.; Shadike, Z.; Huang, X. Q.; Luo, J.; Yang, Z. Z.; Li, H.; Gu, L.; Yang, X. Q. et al. Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3. Sci. Rep. 2015, 5, 8810.CrossRefGoogle Scholar
  28. [28]
    Zheng, H.; Wang, S. Q.; Wang, J. Z.; Wang, J.; Li, L.; Yang, Y.; Feng, C. Q.; Sun, Z. Q. 3D Fe2(MoO4)3 microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries. J. Nanopart. Res. 2015, 17, 449.CrossRefGoogle Scholar
  29. [29]
    Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G. V. S.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792–2799.CrossRefGoogle Scholar
  30. [30]
    Wu, Z. G.; Zhong, Y. J.; Liu, J.; Wu, J. H.; Guo, X. D.; Zhong, B. H.; Zhang, Z. Y. Subunits controlled synthesis of α-Fe2O3 multi-shelled core-shell microspheres and their effects on lithium/sodium ion battery performances. J. Mater. Chem. A 2015, 3, 10092–10099.CrossRefGoogle Scholar
  31. [31]
    Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk−shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738−744.CrossRefGoogle Scholar
  32. [32]
    Li, H.; Ma, H. R.; Yang, M.; Wang, B.; Shao, H.; Wang, L.; Yu, R. B.; Wang, D. Highly controlled synthesis of multishelled NiO hollow microspheres for enhanced lithium storage properties. Mater. Res. Bull. 2017, 87, 224–229.CrossRefGoogle Scholar
  33. [33]
    Luo, W.; Calas, A.; Tang, C. J.; Li, F.; Zhou, L.; Mai, L. Q. Ultralong Sb2Se3 nanowire-based free-standing membrane anode for lithium/sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 35219–35226.CrossRefGoogle Scholar
  34. [34]
    Li, X. Q.; Zhang, W. X. Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C 2007, 111, 6939–6946.CrossRefGoogle Scholar
  35. [35]
    Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.CrossRefGoogle Scholar
  36. [36]
    Światowska-Mrowiecka, J.; de Diesbach, S.; Maurice, V.; Zanna, S.; Klein, L.; Briand, E.; Vickridge, I.; Marcus, P. Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J. Phys. Chem. C 2008, 112, 11050–11058.CrossRefGoogle Scholar
  37. [37]
    Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Laboratoire de Chimie et Physique: Approche Multiéchelles des Milieux Complexes, Institut Jean BarriolUniversité de LorraineMetzFrance

Personalised recommendations