Advertisement

Nano Research

, Volume 11, Issue 3, pp 1274–1284 | Cite as

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts

  • Hengyi Lu
  • Wei FanEmail author
  • Yunpeng Huang
  • Tianxi LiuEmail author
Research Article

Abstract

The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (CoP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (−20, −91, and −84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts.

Keywords

porous carbon nanofiber cobalt phosphide hydrogen evolution reaction all-pH range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51433001 and 51373037), the Program of Shanghai Academic Research Leader (No. 17XD1400100).

Supplementary material

12274_2017_1741_MOESM1_ESM.pdf (3.4 mb)
Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts

References

  1. [1]
    Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.CrossRefGoogle Scholar
  2. [2]
    Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.CrossRefGoogle Scholar
  3. [3]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.CrossRefGoogle Scholar
  4. [4]
    Chang, Y. H.; Wu, F. Y.; Chen, T. Y.; Hsu, C. L.; Chen, C. H.; Wiryo, F.; Wei, K. H.; Chiang, C. Y.; Li, L. J. Threedimensional molybdenum sulfide sponges for electrocatalytic water splitting. Small 2014, 10, 895–900.CrossRefGoogle Scholar
  5. [5]
    Xie, J. F.; Li, S.; Zhang, X. D.; Zhang, J. J.; Wang, R. X.; Zhang, H.; Pan, B. C.; Xie, Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615–4620.CrossRefGoogle Scholar
  6. [6]
    Wan, C.; Leonard, B. M. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem. Mater. 2015, 27, 4281–4288.CrossRefGoogle Scholar
  7. [7]
    Ang, H.; Wang, H. W.; Li, B.; Zong, Y.; Wang, X. F.; Yan, Q. Y. 3D hierarchical porous Mo2C for efficient hydrogen evolution. Small 2016, 12, 2859–2865.CrossRefGoogle Scholar
  8. [8]
    Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.CrossRefGoogle Scholar
  9. [9]
    Kundu, A.; Sahu, J. N.; Redzwan, G.; Hashim, M. A. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrogen Energy 2013, 38, 1745–1757.CrossRefGoogle Scholar
  10. [10]
    Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.CrossRefGoogle Scholar
  11. [11]
    Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 126, 5531–5534.CrossRefGoogle Scholar
  12. [12]
    Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.CrossRefGoogle Scholar
  13. [13]
    Jiang, P.; Liu, Q.; Ge, C. J.; Cui, W.; Pu, Z. H.; Asiri, A. M.; Sun, X. P. CoP nanostructures with different morphologies: Synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J. Mater. Chem. A 2014, 2, 14634–14640.CrossRefGoogle Scholar
  14. [14]
    Yang, J.; Zhang, Y.; Sun, C. C.; Liu, H. Z.; Li, L. Q.; Si, W. L.; Huang, W.; Yan, Q. Y.; Dong, X. C. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 2016, 9, 612–621.CrossRefGoogle Scholar
  15. [15]
    Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L. N.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.CrossRefGoogle Scholar
  16. [16]
    Huang, H. J.; Wang, X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266–6291.CrossRefGoogle Scholar
  17. [17]
    Li, M.; Liu, X. T.; Xiong, Y. P.; Bo, X. J.; Zhang, Y. F.; Han, C.; Guo, L. P. Facile synthesis of various highly dispersive CoP nanocrystal embedded carbon matrices as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 4255–4265.CrossRefGoogle Scholar
  18. [18]
    Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710–6714.CrossRefGoogle Scholar
  19. [19]
    Zhang, B.; Kang, F. Y.; Tarascon, J. M.; Kim, J. K. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 2016, 76, 319–380.CrossRefGoogle Scholar
  20. [20]
    He, H. Y.; Shi, L.; Fang, Y.; Li, X. L.; Song, Q.; Zhi, L. J. Mass production of multi-channeled porous carbon nanofibers and their application as binder-free electrodes for highperformance supercapacitors. Small 2014, 10, 4671–4676.CrossRefGoogle Scholar
  21. [21]
    Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. D. Pie-like electrode design for high-energy density lithiumsulfur batteries. Nat. Commun. 2015, 6, 8850.CrossRefGoogle Scholar
  22. [22]
    Zhou, Q. H.; Li, Z. Y.; Liang, H. Q.; Long, Y. J.; Wu, Q.; Gao, H. Y.; Liang, G. D.; Zhu, F. M. Crystallizationdriven self-assembly of isotactic polystyrene in N, N-dimethylformamide. Chin. J. Polym. Sci. 2015, 33, 646–651.CrossRefGoogle Scholar
  23. [23]
    Marwat, Z. K.; Baloch, M. K. Miscibility between PS and PSAN affected by solvent and temperature of the system. Chin. J. Polym. Sci. 2014, 32, 1442–1449.CrossRefGoogle Scholar
  24. [24]
    Lu, H. Y.; Huang, Y. P.; Yan, J. J.; Fan, W.; Liu, T. X. Nitrogen-doped graphene/carbon nanotube/Co3O4 hybrids: One-step synthesis and superior electrocatalytic activity for the oxygen reduction reaction. RSC Adv. 2015, 5, 94615–94622.CrossRefGoogle Scholar
  25. [25]
    Xu, C. H.; Sun, J.; Gao, L. A. Controllable synthesis of triangle taper-like cobalt hydroxide and cobalt oxide. CrystEngComm. 2011, 13, 1586–1590.CrossRefGoogle Scholar
  26. [26]
    Infantes-Molina, A.; Cecilia, J. A.; Pawelec, B.; Fierro, J. L. G.; Rodríguez-Castellón, E.; Jiménez-López, A. Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS–HDN competitive reactions. Appl. Catal. A 2010, 390, 253–263.CrossRefGoogle Scholar
  27. [27]
    Yang, F. L.; Chen, Y. T.; Cheng, G. Z.; Chen, S. L.; Luo, W. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 2017, 7, 3824–3831.CrossRefGoogle Scholar
  28. [28]
    Liu, M. J.; Li, J. H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 2016, 8, 2158–2165.CrossRefGoogle Scholar
  29. [29]
    Pan, Y.; Lin, Y.; Chen, Y. J.; Liu, Y. Q.; Liu, C. G. Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution. J. Mater. Chem. A 2016, 4, 4745–4754.CrossRefGoogle Scholar
  30. [30]
    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.CrossRefGoogle Scholar
  31. [31]
    Miao, Y. E.; Huang, Y. P.; Zhang, L. S.; Fan, W.; Lai, F. L.; Liu, T. X. Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binderfree anodes for lithium-ion batteries. Nanoscale 2015, 7, 11093–11101.CrossRefGoogle Scholar
  32. [32]
    Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-controllable WS2(1−x)Se2 x nanotubes for efficient hydrogen evolution reaction. ACS Nano 2014, 8, 8468–8476.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiChina
  2. 2.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations