Nano Research

, Volume 11, Issue 3, pp 1262–1273 | Cite as

Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection

  • Xiaojing Liu
  • Luting Liu
  • Xiujie Hu
  • Shuyun Zhou
  • Rinat Ankri
  • Dror FixlerEmail author
  • Zheng XieEmail author
Research Article


Advanced biocompatible and robust platforms equipped with diverse properties are highly required in biomedical imaging applications for the early detection of atherosclerotic vascular disease and cancers. Designing nanohybrids composed of noble metals and fluorescent materials is a new way to perform multimodal imaging to overcome the limitations of single-modality counterparts. Herein, we propose the novel design of a multimodal contrast agent; namely, an enhanced nanohybrid comprising gold nanorods (GNRs) and carbon dots (CDs) with silica (SiO2) as a bridge. The nanohybrid (GNR@SiO2@CD) construction is based on covalent bonding between SiO2 and the silane-functionalized CDs, which links the GNRs with the CDs to form typical core–shell units. The novel structure not only retains and even highly improves the optical properties of the GNRs and CDs, but also possesses superior imaging performance in both diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM) measurements compared with bare GNRs or fluorescence dyes and CDs. The superior bioimaging properties of the GNR@SiO2@CD nanohybrids were successfully exploited for in vitro DR and FLIM measurements of macrophages within tissue-like phantoms, paving the way toward a theranostic contrast agent for atherosclerosis and cancer.


nanohybrids multimodal imaging contrast agent diffusion reflection fluorescence lifetime imaging atherosclerosis macrophages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Joint NSFC-ISF Research Program (No. 51561145004), jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation, and the President’s International Fellowship Initiative, Chinese Academy of Sciences (No. PIFI2015VTB041).

Supplementary material

12274_2017_1739_MOESM1_ESM.pdf (808 kb)
Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection


  1. [1]
    Jin, Y. D.; Jia, C. X.; Huang, S.-W.; O’Donnell, M.; Gao, X. H. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 41.CrossRefGoogle Scholar
  2. [2]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.CrossRefGoogle Scholar
  3. [3]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.CrossRefGoogle Scholar
  4. [4]
    Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem., Int. Ed. 2001, 40, 4128–4158.CrossRefGoogle Scholar
  5. [5]
    Kobayashi, H.; Koyama, Y.; Barrett, T.; Hama, Y.; Regino, C. A. S.; Shin, I. S.; Jang, B.-S.; Le, N.; Paik, C. H.; Choyke, P. L. et al. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 2007, 1, 258–264.CrossRefGoogle Scholar
  6. [6]
    Baker, M. Whole-animal imaging: The whole picture. Nature 2010, 463, 977–980.CrossRefGoogle Scholar
  7. [7]
    Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2, 18–29.CrossRefGoogle Scholar
  8. [8]
    Tong, L.; Wei, Q. S.; Wei, A.; Cheng, J. X. Gold nanorods as contrast agents for biological imaging: Optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 2009, 85, 21–32.CrossRefGoogle Scholar
  9. [9]
    Fixler, D.; Ankri, R. Subcutaneous gold nanorods detection with diffusion reflection measurement. J. Biomed. Opt. 2013, 18, 061226.CrossRefGoogle Scholar
  10. [10]
    Fixler, D.; Zalevsky, Z. In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods. Nano. Lett. 2013, 13, 6292–6296.CrossRefGoogle Scholar
  11. [11]
    Ankri, R.; Duadi, H.; Motiei, M.; Fixler, D. In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods—A quantitative study. J. Biophot. 2012, 5, 263–273.CrossRefGoogle Scholar
  12. [12]
    Ankri, R.; Meiri, A.; Lau, S. I.; Motiei, M.; Popovtzer, R.; Fixler, D. Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection. J. Biophot. 2013, 6, 188–196.CrossRefGoogle Scholar
  13. [13]
    Ankri, R.; Leshem-Lev, D.; Fixler, D.; Popovtzer, R.; Motiei, M.; Kornowski, R.; Hochhauser, E.; Lev, E. I. Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano Lett. 2014, 14, 2681–2687.CrossRefGoogle Scholar
  14. [14]
    Becker, W. Fluorescence lifetime imaging-techniques and applications. J. Microsc. 2012, 247, 119–136.CrossRefGoogle Scholar
  15. [15]
    Fixler, D.; Nayhoz, T.; Ray, K. Diffusion reflection and fluorescence lifetime imaging microscopy study of fluorophore-conjugated gold nanoparticles or nanorods in solid phantoms. ACS Photonics 2014, 1, 900–905.CrossRefGoogle Scholar
  16. [16]
    van Munster, E. B.; Gadella, T. W. J. Fluorescence lifetime imaging microscopy (FLIM). In Microscopy Techniques. Rietdorf, J., Ed.; Springer: Berlin Heidelberg, 2005; pp 143–175.CrossRefGoogle Scholar
  17. [17]
    Fixler, D.; Tirosh, R.; Zurgil, N.; Deutsch, M. Tracing apoptosis and stimulation in individual cells by fluorescence intensity and anisotropy decay. J. Biomed. Opt. 2005, 10, 034007.CrossRefGoogle Scholar
  18. [18]
    Ankri, R.; Ashkenazy, A.; Milstein, Y.; Brami, Y.; Olshinka, A.; Goldenberg-Cohen, N.; Popovtzer, A.; Fixler, D.; Hirshberg, A. Gold nanorods based air scanning electron microscopy and diffusion reflection imaging for mapping tumor margins in squamous cell carcinoma. ACS Nano 2016, 10, 2349–2356.CrossRefGoogle Scholar
  19. [19]
    Zhang, H.; Cheng, K.; Hou, Y. M.; Fang, Z.; Pan, Z. X.; Wu, W. J.; Hua, J. L.; Zhong, X. H. Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 2012, 48, 11235–11237.CrossRefGoogle Scholar
  20. [20]
    Yang, Y. L.; An, F. F.; Liu, Z.; Zhang, X. J.; Zhou, M. J.; Li, W.; Hao, X. J.; Lee, C.-S.; Zhang, X. H. Ultrabright and ultrastable near-infrared dye nanoparticles for in vitro and in vivo bioimaging. Biomaterials 2012, 33, 7803–7809.CrossRefGoogle Scholar
  21. [21]
    Pang, R.; Zhou, S. Y.; Hu, X. J.; Xie, Z.; Liu, X. J.; Duadi, H.; Fixler, D. New diffusion reflection imaging system using gold nanorods coated with poly-(3,4-ethylenedioxythiophene). Opt. Mater. Express 2016, 6, 1238–1246.CrossRefGoogle Scholar
  22. [22]
    Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.CrossRefGoogle Scholar
  23. [23]
    Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.CrossRefGoogle Scholar
  24. [24]
    Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Highly luminescent organosilane-functionalized carbon dots. Adv. Func. Mater. 2011, 21, 1027–1031.CrossRefGoogle Scholar
  25. [25]
    Xie, Z.; Wang, F.; Liu, C. Y. Organic–inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716–1721.CrossRefGoogle Scholar
  26. [26]
    Ankri, R.; Melzer, S.; Tarnok, A.; Fixler, D. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential tool for in vivo atherosclerosis tracking. Int. J. Nanomed. 2015, 10, 4437–4446.Google Scholar
  27. [27]
    Melzer, S.; Ankri, R.; Fixler, D.; Tarnok, A. Nanoparticle uptake by macrophages in vulnerable plaques for atherosclerosis diagnosis. J. Biophot. 2015, 8, 871–883.CrossRefGoogle Scholar
  28. [28]
    Deng, L.; Liu, L.; Zhu, C. Z.; Li, D.; Dong, S. J. Hybrid gold nanocube@ silica@ graphene-quantum-dot superstructures: Synthesis and specific cell surface protein imaging applications. Chem. Commun. 2013, 49, 2503–2505.CrossRefGoogle Scholar
  29. [29]
    Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.CrossRefGoogle Scholar
  30. [30]
    Ouhenia-Ouadahi, K.; Yasukuni, R.; Yu, P.; Laurent, G.; Pavageau, C.; Grand, J.; Guérin, J.; Léaustic, A.; Félidj, N.; Aubard, J. et al. Photochromic–fluorescent–plasmonic nanomaterials: Towards integrated three-component photoactive hybrid nanosystems. Chem. Commun. 2014, 50, 7299–7302.CrossRefGoogle Scholar
  31. [31]
    Lai, C. W.; Hsiao, J. K.; Chen, Y. C.; Chou, P. T. Spherical and anisotropic silica shell nanomaterials. In Nanotechnologies for the Life Sciences. Kumar, C., Ed.; Wiley-VCH Verlag GmbH & Co: Weinheim, 2009.Google Scholar
  32. [32]
    Li, X.; Qian, J.; Jiang, L.; He, S. L. Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl. Phys. Lett. 2009, 94, 063111.CrossRefGoogle Scholar
  33. [33]
    Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329–4335.CrossRefGoogle Scholar
  34. [34]
    Wang, K.; Zhang, X. L.; Niu, C. Y.; Wang, Y. Q. Templateactivated strategy toward one-step coating silica colloidal microspheres with sliver. ACS Appl. Mater. Interfaces 2014, 6, 1272–1278.CrossRefGoogle Scholar
  35. [35]
    Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.CrossRefGoogle Scholar
  36. [36]
    Xu, J. B.; Zhao, T. S.; Liang, Z. X.; Zhu, L. D. Facile preparation of AuPt alloy nanoparticles from organometallic complex precursor. Chem. Mater. 2008, 20, 1688–1690.CrossRefGoogle Scholar
  37. [37]
    Wu, C. L.; Xu, Q.-H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 2009, 25, 9441–9446.CrossRefGoogle Scholar
  38. [38]
    Fixler, D.; Ankri, R.; Kaplan, I.; Novikov, I.; Hirshberg, A. Diffusion reflection: A novel method for detection of oral cancer. J. Dent. Res. 2014, 93, 602–606.CrossRefGoogle Scholar
  39. [39]
    Barnoy, E. A.; Fixler, D.; Popovtzer, R.; Nayhoz, T.; Ray, K. An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms. Nano Res. 2015, 8, 3912–3921.CrossRefGoogle Scholar
  40. [40]
    Turgeman, L.; Fixler, D. The influence of dead time related distortions on live cell fluorescence lifetime imaging (FLIM) experiments. J. Biophot. 2014, 7, 442–452.CrossRefGoogle Scholar
  41. [41]
    Li, Y.-Q.; Cao, S.-H.; Cai, W.-P.; Liu, Q.; Liu, X.-Q.; Weng, Y.-H. Directional fluorescence based on surface plasmoncoupling. In Reviews in Fluorescence 2015. Geddes, C. D., Ed.; Springer: Switzerland, 2016; pp 71–95.CrossRefGoogle Scholar
  42. [42]
    Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of watersoluble and functionalized nanoparticles by silica coating. Chem. Mater. 2007, 19, 5074–5082.CrossRefGoogle Scholar
  43. [43]
    Foda, M. F.; Huang, L.; Shao, F.; Han, H.-Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 2011–2017.CrossRefGoogle Scholar
  44. [44]
    Wu, Q.; Chen, L.; Huang, L.; Wang, J.; Liu, J. W.; Hu, C.; Han, H. Y. Quantum dots decorated gold nanorod as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosens. Bioelectron. 2015, 74, 16–23.CrossRefGoogle Scholar
  45. [45]
    Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H. Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: A novel drug-delivery system. Adv. Mater. 2004, 16, 1959–1966.CrossRefGoogle Scholar
  46. [46]
    Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and twophoton imaging. Adv. Mater. 2013, 25, 6569–6574.CrossRefGoogle Scholar
  47. [47]
    Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; de la Fuentea, J. M. et al. Martinez de la Fuentea, J.Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano. 2016, 10, 2375–2385.CrossRefGoogle Scholar
  48. [48]
    Fixler, D.; Garcia, J.; Zalevsky, Z.; Weiss, A.; Deutsch, M.. Speckle random coding for 2D super resolving fluorescent microscopic imaging. Micron 2007, 38, 121–128.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Faculty of Engineering and Institute of Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations