Nano Research

, Volume 11, Issue 3, pp 1238–1246 | Cite as

Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes

  • Xiang-Qian Zhang
  • Bin He
  • Wen-Cui Li
  • An-Hui LuEmail author
Research Article


Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1,170, 1,050, and 860 mA·h·g−1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g−1), respectively), and a stable reversible capacity of 847 mA·h·g−1 after 300 cycles at a high rate of 2.0 C.


hollow carbon nanofibers pore-adjusting strategy sulfur cathodes rate capability energy materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (No. 2013CB934104), the National Natural Science Foundation of China (Nos. 21225312 and 21376047), and Cheung Kong Scholars Program of China (No. T2015036).

Supplementary material

12274_2017_1737_MOESM1_ESM.pdf (1.6 mb)
Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes


  1. [1]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  2. [2]
    Wang, L. N.; Wang, Y. G.; Xia, Y. Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci. 2015, 8, 1551–1558.CrossRefGoogle Scholar
  3. [3]
    Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 2015, 92, 41–63.CrossRefGoogle Scholar
  4. [4]
    Dai, L. M.; Chang, D. W.; Baek, J. B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130–1166.CrossRefGoogle Scholar
  5. [5]
    Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon materials for lithium sulfur batteries—Ten critical questions. Chem.—Eur. J. 2016, 22, 7324–7351.CrossRefGoogle Scholar
  6. [6]
    Wang, J. L.; He, Y. S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.CrossRefGoogle Scholar
  7. [7]
    Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 2015, 16, 268–280.CrossRefGoogle Scholar
  8. [8]
    Zheng, Z. M.; Guo, H. C.; Pei, F.; Zhang, X.; Chen, X. Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li–S batteries. Adv. Funct. Mater. 2016, 26, 8952–8959.CrossRefGoogle Scholar
  9. [9]
    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.CrossRefGoogle Scholar
  10. [10]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  11. [11]
    Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798–802.CrossRefGoogle Scholar
  12. [12]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  13. [13]
    Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem., Int. Ed. 2011, 123, 6026–6030.CrossRefGoogle Scholar
  14. [14]
    Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.CrossRefGoogle Scholar
  15. [15]
    Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium–sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.CrossRefGoogle Scholar
  16. [16]
    Sun, Q.; He, B.; Zhang, X.-Q.; Lu, A.-H. Engineering of hollow core–shell interlinked carbon spheres for highly stable lithium–sulfur batteries. ACS Nano 2015, 9, 8504–8513.CrossRefGoogle Scholar
  17. [17]
    Peng, X.-X.; Lu, Y.-Q.; Zhou, L.-L.; Sheng, T.; Shen, S.-Y.; Liao, H.-G.; Huang, L.; Li, J.-T.; Sun, S.-G. Graphitized porous carbon materials with high sulfur loading for lithium–sulfur batteries. Nano Energy 2017, 32, 503–510.CrossRefGoogle Scholar
  18. [18]
    Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.CrossRefGoogle Scholar
  19. [19]
    Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.CrossRefGoogle Scholar
  20. [20]
    Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571–1579.CrossRefGoogle Scholar
  21. [21]
    Hu, G. J.; Sun, Z. H.; Shi, C.; Fang, R. P.; Chen, J.; Hou, P. X.; Liu, C.; Cheng, H. M.; Li, F. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium–sulfur batteries. Adv. Mater. 2017, 29, 1603835.Google Scholar
  22. [22]
    Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium–sulfur batteries. Nano Lett. 2016, 16, 440–447.CrossRefGoogle Scholar
  23. [23]
    Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.CrossRefGoogle Scholar
  24. [24]
    Zhang, J.; Yang, C.-P.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.CrossRefGoogle Scholar
  25. [25]
    Pang, Q.; Kundu, D.; Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater. Horiz. 2016, 3, 130–136.CrossRefGoogle Scholar
  26. [26]
    Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D.-W.; Wang, S. G.; Huang, K.; Yin, L.-C.; Li, F.; Cheng, H.-M. A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 2014, 26, 625–631.CrossRefGoogle Scholar
  27. [27]
    He, B.; Li, W.-C.; Yang, C.; Wang, S.-Q.; Lu, A.-H. Incorporating sulfur inside the pores of carbons for advanced lithium–sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633–1639.CrossRefGoogle Scholar
  28. [28]
    Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopaminecoated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5250–5256.CrossRefGoogle Scholar
  29. [29]
    Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.CrossRefGoogle Scholar
  30. [30]
    Zhou, Y.; Zhou, C. G.; Li, Q. Y.; Yan, C. J.; Han, B.; Xia, K. S.; Gao, Q.; Wu, J. P. Enabling prominent high-rate and cycle performances in one lithium–sulfur battery: Designing permselective gateways for Li+ transportation in holey-CNT/S cathodes. Adv. Mater. 2015, 27, 3774–3781.CrossRefGoogle Scholar
  31. [31]
    Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, 1301761.CrossRefGoogle Scholar
  32. [32]
    Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.CrossRefGoogle Scholar
  33. [33]
    Zhu, Q. Z.; Zhao, Q.; An, Y. B.; Anasori, B.; Wang, H. R.; Xu, B. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium–sulfur battery. Nano Energy 2017, 33, 402–409.CrossRefGoogle Scholar
  34. [34]
    Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.CrossRefGoogle Scholar
  35. [35]
    Zhang, X.-Q.; Sun, Q.; Dong, W.; Li, D.; Lu, A.-H.; Mu, J.-Q.; Li, W.-C. Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage. J. Mater. Chem. A 2013, 1, 9449–9455.CrossRefGoogle Scholar
  36. [36]
    de Godoi, F. C.; Wang, D.-W.; Zeng, Q. C.; Wu, K.-H.; Gentle, I. R. Dependence of LiNO3 decomposition on cathode binders in Li–S batteries. J. Power Sources 2015, 288, 13–19.CrossRefGoogle Scholar
  37. [37]
    Li, C. Y.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Polysulfide-blocking microporous polymer membrane tailored for hybrid Li-sulfur flow batteries. Nano Lett. 2015, 15, 5724–5729.CrossRefGoogle Scholar
  38. [38]
    Chung, S.-H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium–sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 2015, 5, 1500738.CrossRefGoogle Scholar
  39. [39]
    Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L.-M.; Lou, X. W. D. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat. Commun. 2016, 7, 13065.CrossRefGoogle Scholar
  40. [40]
    Zhu, L.; Peng, H.-J.; Liang, J. Y.; Huang, J.-Q.; Chen, C.-M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as freestanding paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 2015, 11, 746–755.CrossRefGoogle Scholar
  41. [41]
    Ma, L.; Zhuang, H. L.; Wei, S. Y.; Hendrickson, K. E.; Kim, M. S.; Cohn, G.; Hennig, R. G.; Archer, L. A. Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016, 10, 1050–1059.CrossRefGoogle Scholar
  42. [42]
    Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for highperformance lithium–sulfur batteries. Nat. Commun. 2016, 7, 10601.CrossRefGoogle Scholar
  43. [43]
    Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017, 13, 1700087.CrossRefGoogle Scholar
  44. [44]
    Li, G.-C.; Li, G.-R.; Ye, S.-H.; Gao, X.-P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.CrossRefGoogle Scholar
  45. [45]
    Pei, F.; An, T. H.; Zang, J.; Zhao, X. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li–S batteries. Adv. Energy Mater. 2016, 6, 1502539.CrossRefGoogle Scholar
  46. [46]
    Peng, H. J.; Liang, J. Y.; Zhu, L.; Huang, J. Q.; Cheng, X. B.; Guo, X. F.; Ding, W. P.; Zhu, W. C.; Zhang, Q. Catalytic self-limited assembly at hard templates: A mesoscale approach to graphene nanoshells for lithium–sulfur batteries. ACS Nano 2014, 8, 11280–11289.CrossRefGoogle Scholar
  47. [47]
    Zeng, L. C.; Pan, F. S.; Li, W. H.; Jiang, Y.; Zhong, X. W.; Yu, Y. Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale 2014, 6, 9579–9587.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Xiang-Qian Zhang
    • 1
  • Bin He
    • 1
  • Wen-Cui Li
    • 1
  • An-Hui Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations