Advertisement

Nano Research

, Volume 11, Issue 3, pp 1227–1237 | Cite as

High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks

  • Hongchao Zhang
  • You Meng
  • Longfei Song
  • Linqu Luo
  • Yuanbin Qin
  • Ning Han
  • Zaixing Yang
  • Lei Liu
  • Johnny C. HoEmail author
  • Fengyun WangEmail author
Research Article

Abstract

Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on–off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10–4 A), large on/off current ratio (>108), and respectable peak carrier mobility (2.04 cm2/(V·s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-κ HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm2/(V·s) and 0.9 V, respectively, which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for highperformance, large-scale, and low-power electronics.

Keywords

In2O3 nanofiber transistor doping threshold voltage enhancement mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51402160, 51302154, and 51672229), the General Research Fund of the Research Grants Council of Hong Kong, China (No. CityU 11275916), the Natural Science Foundation of Shandong Province, China (No. ZR2014EMQ011), the Taishan Scholar Program of Shandong Province, China, the Science Technology, and Innovation Committee of Shenzhen Municipality (No. JCYJ20160229165240684), and was supported by a grant from the Shenzhen Research Institute, City University of Hong Kong. The work was also supported by National Demonstration Center for Experimental Applied Physics Education (Qingdao University).

Supplementary material

12274_2017_1735_MOESM1_ESM.pdf (1.7 mb)
High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks

References

  1. [1]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.CrossRefGoogle Scholar
  2. [2]
    Chuang, S.; Gao, Q.; Kapadia, R.; Ford, A. C.; Guo, J.; Javey, A. Ballistic InAs nanowire transistors. Nano Lett. 2012, 13, 555–558.CrossRefGoogle Scholar
  3. [3]
    Razavieh, A.; Mehrotra, S.; Singh, N.; Klimeck, G.; Janes, D.; Appenzeller, J. Utilizing the unique properties of nanowire MOSFETs for RF applications. Nano Lett. 2013, 13, 1549–1554.CrossRefGoogle Scholar
  4. [4]
    Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.CrossRefGoogle Scholar
  5. [5]
    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.CrossRefGoogle Scholar
  6. [6]
    Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B. J.; Gösele, U. et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28–35.CrossRefGoogle Scholar
  7. [7]
    Ko, H.; Zhang, Z. X.; Ho, J. C.; Takei, K.; Kapadia, R.; Chueh, Y. L.; Cao, W. Z.; Cruden, B. A.; Javey, A. Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small 2010, 6, 22–26.CrossRefGoogle Scholar
  8. [8]
    Ju, S; Li, J. F.; Liu, J.; Chen, P. C.; Ha, Y. G.; Ishikawa, F.; Chang, H.; Zhou, C. W.; Facchetti, W. A.; Janes, D. B. et al. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. Nano Lett. 2008, 8, 997–1004.CrossRefGoogle Scholar
  9. [9]
    Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.CrossRefGoogle Scholar
  10. [10]
    Lee, C.; Srisungsitthisunti, P.; Park, S.; Kim, S.; Xu, X. F.; Roy, K.; Janes, D. B.; Zhou, C. W.; Ju, S.; Qi, M. H. Control of current saturation and threshold voltage shift in indium oxide nanowire transistors with femtosecond laser annealing. ACS Nano 2011, 5, 1095–1101.CrossRefGoogle Scholar
  11. [11]
    Li, C.; Zhang, D.; Han, S.; Liu, X.; Tang, T.; Zhou, C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 2003, 15, 143–146.CrossRefGoogle Scholar
  12. [12]
    Su, M.; Yang, Z. Y.; Liao, L.; Zou, X. M.; Ho, J. C.; Wang, J. L.; Wang, J. L.; Hu, W. D.; Xiao, X. H.; Jiang, C. Z. et al. Side-gated In2O3 nanowire ferroelectric FETs for highperformance nonvolatile memory applications. Adv. Sci. 2016, 3, 1600078.CrossRefGoogle Scholar
  13. [13]
    Park, H.; Yoon, K. R.; Kim, S. K.; Kim, I. D.; Jin, J.; Kim, Y. H.; Bae, B. S. Highly conducting In2O3 nanowire network with passivating ZrO2 thin film for solution-processed field effect transistors. Adv. Electron. Mater. 2016, 2, 1600218.CrossRefGoogle Scholar
  14. [14]
    Ford, A. C.; Ho, J. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z. Y.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.CrossRefGoogle Scholar
  15. [15]
    Nikoobakht, B. Toward industrial-scale fabrication of nanowire-based devices. Chem. Mater. 2007, 19, 5279–5284.CrossRefGoogle Scholar
  16. [16]
    Xuan, Y.; Wu, Y. Q.; Ye, P. D. High-performance inversiontype enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 2008, 29, 294–296.CrossRefGoogle Scholar
  17. [17]
    Zhu, Z. T.; Suzuki, M.; Nagashima, K.; Yoshida, H.; Kanai, M.; Gang, M.; Anzai, H.; Zhuge, F.; Yong, H.; Boudot, M. et al. Rational concept for reducing growth temperature in vapor-liquid-solid process of metal oxide nanowires. Nano Lett. 2016, 16, 7495–7502.CrossRefGoogle Scholar
  18. [18]
    Zhang, H. D.; Yu, M.; Zhang, J. C.; Sheng, C. H.; Yan, X.; Han, W. P.; Liu, Y. C.; Chen, S.; Shen, G. Z.; Long, Y. Z. Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p–n homojunctions by electrospinning. Nanoscale 2015, 7, 10513–10518.CrossRefGoogle Scholar
  19. [19]
    Liu, S.; Liu, S. L.; Long, Y. Z.; Liu, L. Z.; Zhang, H. D.; Zhang, J. C.; Han, W. P.; Liu, Y. C. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices. Appl. Phys. Lett. 2014, 104, 042105.CrossRefGoogle Scholar
  20. [20]
    Kim, S.; Carpenter, P. D.; Jean, R. K.; Chen, H. T.; Zhou, C. W.; Ju, S.; Janes, D. B. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors. ACS Nano 2012, 6, 7352–7361.CrossRefGoogle Scholar
  21. [21]
    Hong, W. K.; Sohn, J. I.; Hwang, D. K.; Kwon, S. S.; Jo, G.; Song, S.; Kim, S. M.; Ko, H. J.; Park, S. J.; Welland, M. E. et al. Tunable electronic transport characteristics of surfacearchitecture- controlled ZnO nanowire field effect transistors. Nano Lett. 2008, 8, 950–956.CrossRefGoogle Scholar
  22. [22]
    Zou, X. M.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; Xiong, Q. H. et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 2013, 7, 804–810.CrossRefGoogle Scholar
  23. [23]
    Wang, F. Y.; Yip, S. P.; Dong, G. F.; Xiu, F.; Song, L. F.; Yang, Z. X.; Li. D. P.; Hung, T. F.; Han, N.; Ho, J. C. Manipulating III-V nanowire transistor performance via surface decoration of metal-oxide nanoparticles. Adv. Mater. Interface 2017, 4, 1700260.CrossRefGoogle Scholar
  24. [24]
    Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z. et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287–3292.CrossRefGoogle Scholar
  25. [25]
    Zhang, X. W.; Zhang, X. J.; Wang, L.; Wu, Y. M.; Wang, Y.; Gao, P.; Han, Y. Y.; Jie, J. S. ZnSe nanowire/Si p–n heterojunctions: Device construction and optoelectronic applications. Nanotechnology 2013, 24, 395201.CrossRefGoogle Scholar
  26. [26]
    Long, Y. Z.; Yu, M.; Sun, B.; Gu, C. Z.; Fan, Z. Y. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 2012, 41, 4560–4580.CrossRefGoogle Scholar
  27. [27]
    Cao, J.; Dou, H. M.; Zhang, H.; Mei, H. X.; Liu, S.; Fei, T.; Wang, R.; Wang, L. J.; Zhang T. Controllable synthesis and HCHO-sensing properties of In2O3 micro/nanotubes with different diameters. Sens. Actuators B Chem. 2014, 198, 180–187.CrossRefGoogle Scholar
  28. [28]
    Liu, H. Q.; Reccius, C. H.; Craighead, H. G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl. Phys. Lett. 2005, 87, 253106.CrossRefGoogle Scholar
  29. [29]
    Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106.CrossRefGoogle Scholar
  30. [30]
    Wu, H.; Lin, D. D.; Zhang, R.; Pan, W. ZnO nanofiber field-effect transistor assembled by electrospinning. J. Am. Ceram. Soc. 2008, 91, 656–659.CrossRefGoogle Scholar
  31. [31]
    Choi, S. H.; Jang, B. H.; Park, J. S.; Demadrille, R.; Tuller, H. L.; Kim, I. D. Low voltage operating field effect transistors with composite In2O3-ZnO-ZnGa2O4 nanofiber network as active channel layer. ACS Nano 2014, 8, 2318–2327.CrossRefGoogle Scholar
  32. [32]
    Gazquez, G. C.; Lei, S. D.; George, A.; Gullapalli, H.; Boukamp, B. A.; Ajayan, P. M.; ten Elshof, J. E. Low-cost, large-area, facile, and rapid fabrication of aligned ZnO nanowire device arrays. ACS Appl. Mater. Interfaces 2016, 8, 13466–13471.CrossRefGoogle Scholar
  33. [33]
    Zhao, C. H.; Huang, B. Y.; Xie, E. Q.; Zhou, J. Y.; Zhang, Z. X. Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping. Sens. Actuators B Chem. 2015, 207, 313–320.CrossRefGoogle Scholar
  34. [34]
    Meng, Y.; Liu, G. X.; Liu, A.; Guo, Z. D.; Sun, W. J.; Shan, F. K. Photochemical activation of electrospun In2O3 nanofibers for high-performance electronic devices. ACS Appl. Mater. Interfaces 2017, 9, 10805–10812.CrossRefGoogle Scholar
  35. [35]
    Kim, G. H.; Jeong, W. H.; Ahn, B. D.; Shin, H. S.; Kim, H. J.; Kim, H. J.; Ryu, M. K.; Park, K. B.; Seon, J. B.; Lee, S. Y. Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 2010, 96, 163506.CrossRefGoogle Scholar
  36. [36]
    Liu, G. X.; Liu, A.; Zhu, H. H.; Shin, B.; Fortunato, E.; Martins, R.; Wang, Y. Q.; Shan, F. K. Low-temperature, nontoxic water-induced metal-oxide thin films and their application in thin-film transistors. Adv. Funct. Mater. 2015, 25, 2564–2572.CrossRefGoogle Scholar
  37. [37]
    Zhang, F.; Liu, G. X.; Liu, A.; Shin, B.; Shan, F. K. Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications. Ceram. Int. 2015, 41, 13218–13223.CrossRefGoogle Scholar
  38. [38]
    Ko, J.; Kim, J.; Park, S. Y.; Lee, E.; Kim, K.; Lim, K. H.; Kim, Y. S. Solution-processed amorphous hafnium-lanthanum oxide gate insulator for oxide thin-film transistors. J. Mater. Chem. C 2014, 2, 1050–1056.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Hongchao Zhang
    • 1
  • You Meng
    • 1
  • Longfei Song
    • 1
  • Linqu Luo
    • 1
  • Yuanbin Qin
    • 2
  • Ning Han
    • 3
  • Zaixing Yang
    • 4
  • Lei Liu
    • 1
  • Johnny C. Ho
    • 5
    • 6
    • 7
    Email author
  • Fengyun Wang
    • 1
    Email author
  1. 1.College of Physics and Cultivation Base for State Key LaboratoryQingdao UniversityQingdaoChina
  2. 2.Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  3. 3.State Key Laboratory of Multiphase Complex Systems, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  4. 4.School of Microelectronics and Center of NanoelectronicsShandong UniversityJinanChina
  5. 5.Department of Materials Science and EngineeringCity University of Hong KongKowloon, Hong KongChina
  6. 6.State Key Laboratory of Millimeter WavesCity University of Hong KongKowloon, Hong KongChina
  7. 7.Shenzhen Research InstituteCity University of Hong KongShenzhenChina

Personalised recommendations