Nano Research

, Volume 11, Issue 2, pp 1082–1098 | Cite as

Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery

  • Ka Young Kim
  • Hanyong Jin
  • Jaehyeon Park
  • Sung Ho Jung
  • Ji Ha Lee
  • Hyesong Park
  • Sung Kuk Kim
  • Jeehyeon Bae
  • Jong Hwa JungEmail author
Research Article


Subcellular organelle-specific nanoparticles for simultaneous tumor targeting, imaging, and drug delivery are of enormous interest in cancer therapy. Herein, we report a selective mitochondria-targeting probe 1, which was synthesized by incorporating a triphenyl phosphine with a cyanostilbene and a long alkyl chain moiety. Probe 1 was found to display fluorescence via aggregation-induced emission (AIE). The low molecular-weight cyanostilbene-based probe 1, with and without an anticancer drug, formed a narrow homogeneous nanorod with ca. 110 nm of length or nanoparticles with ca. 20 nm diameter in aqueous media. The self-assembled cyanostilbene nanoparticles (N1) selectively accumulated in the mitochondria of cancer cells and emitted fluorescence. N1 was also able to deliver an anticancer drug, doxorubicin (DOX), to the mitochondria with high efficiency. More importantly, N1 exhibited highly selective cytotoxicity for cancer cells over normal cells. The great potential applications of this self-assembled nanoparticle to biological systems result from its ability to aggregate in the mitochondria. This aggregation led to a significant increase in the generation of intracellular reactive oxygen species and to a decrease in the mitochondrial membrane potential in cancer cells. Furthermore, tumor tissue uptake experiments in mice proposed that the self-assembled N1 had the ability to internalize and deliver the anticancer drug into tumor tissues effectively. Moreover, both N1 and N1-encapsulated doxorubicin (N1-DOX) effectively suppressed tumor growth in a xenograft model in vivo. Taken together, our findings indicate that applications of N1 as a mitochondrial targeting probe, drug delivery platform, and chemotherapeutic agent provide a unique strategy for potential image-guided therapy as well as a site-specific delivery system to cancer cells.


aggregation-induced emission chemotherapy drug delivery mitochondria-targeting fluorescence imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by a grant from NRF (Nos. 2017R1A4A1014595 and 2015R1A2A2A05001400). In addition, this work was partially supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, No. PJ011177022016), Rural development Administration, Korea.

Supplementary material

12274_2017_1728_MOESM1_ESM.pdf (5.2 mb)
Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery


  1. [1]
    Lee, S. J.; Park, K.; Oh, Y. K.; Kwon, S. H.; Her, S.; Kim, I. S.; Choi, K.; Lee, S. J.; Kim, H.; Lee, S. G. et al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials 2009, 30, 2929–2939.CrossRefGoogle Scholar
  2. [2]
    Lee, S. J.; Koo, H.; Jeong, H.; Huh, M. S.; Choi, Y.; Jeong, S. Y.; Byun, Y.; Choi, K.; Kim, K.; Kwon, I. C. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J. Control. Release 2011, 152, 21–29.CrossRefGoogle Scholar
  3. [3]
    Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676–688.CrossRefGoogle Scholar
  4. [4]
    Meares, C. F.; Chmura, A. J.; Orton, M. S.; Corneillie, T. M.; Whetstone, P. A. Molecular tools for targeted imaging and therapy of cancer. J. Mol. Recogn. 2003, 16, 255–259.CrossRefGoogle Scholar
  5. [5]
    Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.CrossRefGoogle Scholar
  6. [6]
    Rajendran, L.; Knölker, H. J.; Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 2010, 9, 29–42.CrossRefGoogle Scholar
  7. [7]
    Sakhrani, N. M.; Padh, H. Organelle targeting: Third level of drug targeting. Drug Des. Devel. Ther. 2013, 7, 585–599.Google Scholar
  8. [8]
    Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591.CrossRefGoogle Scholar
  9. [9]
    Gogvadze, V. Targeting mitochondria in fighting cancer. Curr. Pharm. Des. 2011, 17, 4034–4046.CrossRefGoogle Scholar
  10. [10]
    Paleos, C. M.; Tsiourvas, D.; Sideratou, Z. Triphenylphosphonium decorated liposomes and dendritic polymers: Prospective second generation drug delivery systems for targeting mitochondria. Mol. Pharm. 2016, 13, 2233–2241.CrossRefGoogle Scholar
  11. [11]
    Fonseca, S. B.; Pereira, M. P.; Mourtada, R.; Gronda, M.; Horton, K. L.; Hurren, R.; Minden, M. D.; Schimmer, A. D.; Kelley, S. O. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol. 2011, 18, 445–453.CrossRefGoogle Scholar
  12. [12]
    Chamberlain, G. R.; Tulumello, D. V.; Kelley, S. O. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol. 2013, 8, 1389–1395.CrossRefGoogle Scholar
  13. [13]
    Ju, E. G.; Li, Z. H.; Liu, Z.; Ren, J. S.; Qu, X. G. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. ACS Appl. Mater. Interfaces 2014, 6, 4364–4370.CrossRefGoogle Scholar
  14. [14]
    Millard, M.; Gallagher, J. D.; Olenyuk, B. Z.; Neamati, N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem. 2013, 56, 9170–9179.CrossRefGoogle Scholar
  15. [15]
    Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012, 109, 16288–16293.CrossRefGoogle Scholar
  16. [16]
    Qu, Q. Y.; Ma, X.; Zhao, Y. L. Anticancer effect of α-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles ACS Appl. Mater. Interfaces 2016, 8, 34261–34269.CrossRefGoogle Scholar
  17. [17]
    Kumar, R.; Shin, W. S.; Sunwoo, K.; Kim, W. Y.; Koo, S.; Bhuniya, S.; Kim, J. S. Small conjugate-based theranostic agents: An encouraging approach for cancer therapy. Chem. Soc. Rev. 2015, 44, 6670–6683.CrossRefGoogle Scholar
  18. [18]
    Chen, Z. P.; Li, M.; Zhang, L. J.; He, J. Y.; Wu, L.; Xiao, Y. Y.; Duan, J. A.; Cai, T.; Li, W. D. Mitochondria-targeted drug delivery system for cancer treatment. J. Drug Target. 2016, 24, 492–502.CrossRefGoogle Scholar
  19. [19]
    Milane, L.; Trivedi, M.; Singh, A.; Talekar, M.; Amiji, M. Mitochondrial biology, targets, and drug delivery. J. Control. Release 2015, 207, 40–58.CrossRefGoogle Scholar
  20. [20]
    Tuo, J.; Xie, Y. Q.; Song, J.; Chen, Y. Z.; Guo, Q.; Liu, X.; Ni, X. M.; Xu, D. L.; Huang, H. Z.; Yin, S. et al. Development of a novel berberine-mediated mitochondria-targeting nanoplatform for drug-resistant cancer therapy. J. Mater. Chem. B 2016, 4, 6856–6864.CrossRefGoogle Scholar
  21. [21]
    Qu, Q. Y.; Ma, X.; Zhao, Y. L. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 2015, 7, 16677–16686.CrossRefGoogle Scholar
  22. [22]
    Millard, M.; Pathania, D.; Shabaik, Y.; Taheri, L.; Deng, J. X.; Neamati, N. Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity. PLoS One 2010, 5, e13131.CrossRefGoogle Scholar
  23. [23]
    Shabaik, Y. H.; Millard, M.; Neamati, N. Mechanistic evaluation of a novel small molecule targeting mitochondria in pancreatic cancer cells. PLoS One 2013, 8, e54346.CrossRefGoogle Scholar
  24. [24]
    Wang, X.; Gao, Z. C.; Zhu, J. L.; Gao, Z.; Wang, F. Aggregation induced emission of a cyanostilbene amphiphile as a novel platform for FRET-based ratiometric sensing of mercury ions in water. Polym. Chem. 2016, 7, 5217–5220.CrossRefGoogle Scholar
  25. [25]
    An, B. K.; Gierschner, J.; Park, S. Y. π-conjugated cyanostilbene derivatives: A unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc. Chem. Res. 2012, 45, 544–554.CrossRefGoogle Scholar
  26. [26]
    Zhang, Y. Y.; Li, H. F.; Zhang, G. B.; Xu, X. Y.; Kong, L.; Tao, X. T.; Tian, Y. P.; Yang, J. X. Aggregation-induced emission enhancement and mechanofluorochromic properties of α-cyanostilbene functionalized tetraphenyl imidazole derivatives. J. Mater. Chem. C 2016, 4, 2971–2978.CrossRefGoogle Scholar
  27. [27]
    Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.CrossRefGoogle Scholar
  28. [28]
    Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefGoogle Scholar
  29. [29]
    Chung, J. W.; Yoon, S. J.; An, B. K.; Park, S. Y. High-contrast on/off fluorescence switching via reversible E–Z isomerization of diphenylstilbene containing the α-cyanostilbenic moiety. J. Phys. Chem. C 2013, 117, 11285–11291.CrossRefGoogle Scholar
  30. [30]
    Zhu, L. L.; Li, X.; Zhang, Q.; Ma, X.; Li, M. H.; Zhang, H. C.; Luo, Z.; Ågren, H.; Zhao, Y. L. Unimolecular photoconversion of multicolor luminescence on hierarchical self-assemblies. J. Am. Chem. Soc. 2013, 135, 5175–5182.CrossRefGoogle Scholar
  31. [31]
    Lu, H. B.; Qiu, L. Z.; Zhang, G. Y.; Ding, A. X.; Xu, W. B.; Zhang, G. B.; Wang, X. H.; Kong, L.; Tian, Y. P.; Yang, J. X. Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation. J. Mater. Chem. C 2014, 2, 1386–1389.CrossRefGoogle Scholar
  32. [32]
    Mandal, A. K.; Sreejith, S.; He, T. C.; Maji, S. K.; Wang, X. J.; Ong, S. L.; Joseph, J.; Sun, H. D.; Zhao, Y. L. Three-photonexcited luminescence from unsymmetrical cyanostilbene aggregates: Morphology tuning and targeted bioimaging. ACS Nano 2015, 9, 4796–4805.CrossRefGoogle Scholar
  33. [33]
    Zhu, L. L.; Ang, C. Y.; Li, X.; Nguyen, K. T.; Tan, S. Y.; Ågren, H.; Zhao, Y. L. Luminescent color conversion on cyanostilbene-functionalized quantum dots via in-situ phototuning. Adv. Mater. 2012, 24, 4020–4024.CrossRefGoogle Scholar
  34. [34]
    Aryal, S.; Hu, C. M. J.; Zhang, L. F. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 2010, 4, 251–258.CrossRefGoogle Scholar
  35. [35]
    Lai, W. F.; Shum, H. C. Hypromellose-graft-chitosan and its polyelectrolyte complex as novel systems for sustained drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 10501–10510.CrossRefGoogle Scholar
  36. [36]
    Wang, Y.; Luo, Y. Y.; Zhao, Q.; Wang, Z. J.; Xu, Z. J.; Jia, X. R. An enzyme-responsive nanogel carrier based on PAMAM dendrimers for drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 19899–19906.CrossRefGoogle Scholar
  37. [37]
    Yuan, Y. Y.; Liu, B. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy. ACS Appl. Mater. Interfaces 2014, 6, 14903–14910.CrossRefGoogle Scholar
  38. [38]
    Zhang, C. Q.; Jin, S. B.; Li, S. L.; Xue, X. D.; Liu, J.; Huang, Y. R.; Jiang, Y. G.; Chen, W. Q.; Zou, G. Z.; Liang, X. J. Imaging intracellular anticancer drug delivery by self-assembly micelles with aggregation-induced emission (AIE micelles). ACS Appl. Mater. Interfaces 2014, 6, 5212–5220.CrossRefGoogle Scholar
  39. [39]
    Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355.CrossRefGoogle Scholar
  40. [40]
    Seleci, M.; Seleci, D. A.; Ciftci, M.; Demirkol, D. O.; Stahl, F.; Timur, S.; Scheper, T.; Yagci, Y. Nanostructured amphiphilic star-hyperbranched block copolymers for drug delivery. Langmuir 2015, 31, 4542–4551.CrossRefGoogle Scholar
  41. [41]
    Kwon, G. S.; Forrest, M. L. Amphiphilic block copolymer micelles for nanoscale drug delivery. Drug Dev. Res. 2006, 67, 15–22.CrossRefGoogle Scholar
  42. [42]
    Wang, Y. X.; Guo, D. S.; Duan, Y. C.; Wang, Y. J.; Liu, Y. Amphiphilic p-sulfonatocalix[4]arene as “drug chaperone” for escorting anticancer drugs. Sci. Rep. 2015, 5, 9019.CrossRefGoogle Scholar
  43. [43]
    Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79.CrossRefGoogle Scholar
  44. [44]
    Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.CrossRefGoogle Scholar
  45. [45]
    Yu, D. S.; Peng, P.; Dharap, S. S.; Wang, Y.; Mehlig, M.; Chandna, P.; Zhao, H.; Filpula, D.; Yang, K. R.; Borowski, V. et al. Antitumor activity of poly(ethylene glycol)- camptothecin conjugate: The inhibition of tumor growth in vivo. J. Control. Release 2005, 110, 90–102.CrossRefGoogle Scholar
  46. [46]
    Xu, L.; Anchordoquy, T. Drug delivery trends in clinical trials and translational medicine: Challenges and opportunities in the delivery of nucleic acid-based therapeutics. J. Pharm. Sci. 2011, 100, 38–52.CrossRefGoogle Scholar
  47. [47]
    Malam, Y.; Lim, E. J.; Seifalian, A. M. Current trends in the application of nanoparticles in drug delivery. Curr. Med. Chem. 2011, 18, 1067–1078.CrossRefGoogle Scholar
  48. [48]
    Xiao, K.; Li, Y. P.; Luo, J. T.; Lee, J. S.; Xiao, W. W.; Gonik, A. M.; Agarwal, R. G.; Lam, K. S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32, 3435–3446.CrossRefGoogle Scholar
  49. [49]
    Szebeni, J.; Alving, C. R.; Muggia, F. M. Complement activation by cremophor EL as a possible contributor to hypersensitivity to paclitaxel: An in vitro study. J. Natl. Cancer Inst. 1998, 90, 300–306.CrossRefGoogle Scholar
  50. [50]
    Kloover, J. S.; den Bakker, M. A.; Gelderblom, H.; van Meerbeeck, J. P. Fatal outcome of a hypersensitivity reaction to paclitaxel: A critical review of premedication regimens. Br. J. Cancer 2004, 90, 304–305.CrossRefGoogle Scholar
  51. [51]
    Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288.CrossRefGoogle Scholar
  52. [52]
    Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.CrossRefGoogle Scholar
  53. [53]
    He, Q. J.; Shi, J. L. Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 2011, 21, 5845–5855.CrossRefGoogle Scholar
  54. [54]
    Bharti, C.; Nagaich, U.; Pal, A. K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015, 5, 124–133.CrossRefGoogle Scholar
  55. [55]
    Hu, Q. L.; Gao, M.; Feng, G. X.; Liu, B. Mitochondria-targeted cancer therapy using a light-up probe with aggregationinduced- emission characteristics. Angew. Chem., Int. Ed. 2014, 53, 14225–14229.CrossRefGoogle Scholar
  56. [56]
    Shin, W. S.; Lee, M. G.; Verwilst, P.; Lee, J. H.; Chi, S. G.; Kim, J. S. Mitochondria-targeted aggregation induced emission theranostics: Crucial importance of in situ activation. Chem. Sci. 2016, 7, 6050–6059.CrossRefGoogle Scholar
  57. [57]
    Chen, X. Q.; Tian, X. Z.; Shin, I.; Yoon, J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2011, 40, 4783–4804.CrossRefGoogle Scholar
  58. [58]
    Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5, 2067–2076.CrossRefGoogle Scholar
  59. [59]
    Bae, S. K.; Heo, C. H.; Choi, D. J.; Sen, D.; Cho, E. H.; Cho, B. R.; Kim, H. M. A ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H2S production in Parkinson’s disease gene knockout astrocytes. J. Am. Chem. Soc. 2013, 135, 9915–9923.CrossRefGoogle Scholar
  60. [60]
    Leung, C. W. J.; Hong, Y. N.; Chen, S. J.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. A Photostable AIE luminogen for specific mitochondrial imaging and tracking, J. Am. Chem. Soc. 2013, 135, 62–65.CrossRefGoogle Scholar
  61. [61]
    Chalmers, S.; Caldwell, S. T.; Quin, C.; Prime, T. A.; James, A. M.; Cairns, A. G.; Murphy, M. P.; McCarron, J. G.; Hartley, R. C. Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J. Am. Chem. Soc. 2012, 134, 758–761.CrossRefGoogle Scholar
  62. [62]
    Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170.CrossRefGoogle Scholar
  63. [63]
    Park, M.; Shin, E.; Won, M.; Kim, J. H.; Go, H.; Kim, H. L.; Ko, J. J.; Lee, K.; Bae, J. FOXL2 interacts with steroidogenic factor-1 (SF-1) and represses SF-1-induced CYP17 transcription in granulosa cells. Mol. Endocrinol. 2010, 24, 1024–1036.CrossRefGoogle Scholar
  64. [64]
    Jin, H. Y.; Suh, D. S.; Kim, T. H.; Yeom, J. H.; Lee, K.; Bae, J. IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity. Sci. Rep. 2015, 5, 8367.CrossRefGoogle Scholar
  65. [65]
    Kim, J. H.; Yoon, S.; Park, M.; Park, H. O.; Ko, J. J.; Lee, K.; Bae, J. Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene 2011, 30, 1653–1663.CrossRefGoogle Scholar
  66. [66]
    Brandt, R.; Keston, A. S. Synthesis of diacetyldichlorofluorescin: A stable reagent for fluorometric analysis. Anal. Biochem. 1965, 11, 6–9.CrossRefGoogle Scholar
  67. [67]
    Ryou, S. M.; Yeom, J. H.; Kang, H. J.; Won, M.; Kim, J. S.; Lee, B.; Seong, M. J.; Ha, N. C.; Bae, J.; Lee, K. Gold nanoparticle-DNA aptamer composites as a universal carrier for in vivo delivery of biologically functional proteins. J. Control. Release. 2014, 196, 287–294.CrossRefGoogle Scholar
  68. [68]
    Kim, J. H.; Bae, J. Differential apoptotic and proliferative activities of wild-type FOXL2 and blepharophimosis-ptosisepicanthus inversus syndrome (BPES)-associated mutant FOXL2 proteins. J. Reprod. Dev. 2014, 60, 14–20.CrossRefGoogle Scholar
  69. [69]
    Kim, B.; Yeom, H. R.; Choi, W. Y.; Kim, J. Y.; Yang, C. Synthesis and characterization of a bis-methanofullerene- 4-nitro-α-cyanostilbene dyad as a potential acceptor for high-performance polymer solar cells. Tetrahedron 2012, 68, 6696–6700.CrossRefGoogle Scholar
  70. [70]
    Sun, H.; Ye, K. Q.; Wang, C. Y.; Qi, H. Y.; Li, F.; Wang, Y. The π-π stacked geometries and association thermodynamics of quinacridone derivatives studied by 1H NMR. J. Phys. Chem. A 2006, 110, 10750–10756.CrossRefGoogle Scholar
  71. [71]
    Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic interactions. J. Chem. Soc. Perkin Trans. 2 2001, 2, 651–669.CrossRefGoogle Scholar
  72. [72]
    Deng, Y. H.; Yuan, W.; Jia, Z.; Liu, G. H- and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 2014, 118, 14536–14545.CrossRefGoogle Scholar
  73. [73]
    Spano, F. C.; Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477–500.CrossRefGoogle Scholar
  74. [74]
    Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem., Int. Ed. 2011, 50, 3376–3410.CrossRefGoogle Scholar
  75. [75]
    Hsieh, C. C.; Cheng, Y. M.; Hsu, C. J.; Chen, K. Y.; Chou, P. T. Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. J. Phys. Chem. A 2008, 112, 8323–8332.CrossRefGoogle Scholar
  76. [76]
    Hammes-Schiffer, S. When electrons and protons get excited. Proc. Natl. Acad. Sci. USA 2011, 108, 8531–8532.CrossRefGoogle Scholar
  77. [77]
    Demchenko, A. P.; Tang, K. C.; Chou, P. T. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42, 1379–1408.CrossRefGoogle Scholar
  78. [78]
    Domcke, W.; Sobolewski, A. L. Unraveling the molecular mechanisms of photoacidity. Science 2003, 302, 1693–1694.CrossRefGoogle Scholar
  79. [79]
    Egorin, M. J.; Hildebrand, R. C.; Cimino, E. F.; Bachur, N. R. Cytofluorescence localization of adriamycin and daunorubicin. Cancer Res. 1974, 34, 2243–2245.Google Scholar
  80. [80]
    Smiley, S. T.; Reers, M.; Mottola-Hartshorn, C.; Lin, M.; Chen, A.; Smith, T. W.; Steele, G. D. Jr.; Chen, L. B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA 1991, 88, 3671–3675.CrossRefGoogle Scholar
  81. [81]
    Green, D. R.; McKinnon, P. J. A survivor hits the breaks. Mol. Cell. 2008, 29, 411–412.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Ka Young Kim
    • 1
  • Hanyong Jin
    • 2
  • Jaehyeon Park
    • 1
  • Sung Ho Jung
    • 1
  • Ji Ha Lee
    • 1
  • Hyesong Park
    • 1
  • Sung Kuk Kim
    • 1
  • Jeehyeon Bae
    • 2
  • Jong Hwa Jung
    • 1
    Email author
  1. 1.Department of Chemistry and Research Institute of Natural SciencesGyeongsang National UniversityJinjuRepublic of Korea
  2. 2.School of PharmacyChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations