Single ultrasmall Mn2+-doped NaNdF4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging

Research Article

Abstract

Multimodal imaging probes have attracted wide attention and have potential to diagnose diseases accurately because of the complementary advantages of multiple imaging modalities. However, intractable issues remain with regard to their complicated multi-step fabrication for hybrid nanostructure and interference of different modal imaging. In the present study, we present, for the first time, T1 and T2-weighted magnetic resonance imaging (MRI) of ultrasmall Mn2+-doped NaNdF4 nanocrystals (NCs), which can also be used simultaneously for second near infrared (NIR-II) fluorescence and computed tomography (CT) imaging, thus enabling high-performance multimodal MRI/NIR-II/CT imaging of single NaNdF4:Mn NCs. The NaNdF4:Mn was demonstrated as a nanoprobe for in vitro and in vivo multimodal MRI and NIR-II fluorescence imaging of human mesenchymal stem cells. The results provide a new strategy to simplify the nanostructure and preparation of probes, based on the features of NaNdF4:Mn NCs, which offer highly efficient multimodal MRI/NIR-II/CT imaging.

Keywords

NaNdF4:Mn ultrasmall nanoprobe magnetic resonance imaging (MRI) second near infrared (NIR-II) fluorescence multimodal imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was supported financially by the National Natural Science Foundation of China (Nos. 11174324 and 10804082) and by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2011235).

Supplementary material

12274_2017_1727_MOESM1_ESM.pdf (1.1 mb)
Single ultrasmall Mn2+-doped NaNdF4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging

References

  1. [1]
    Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H. L.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. A pH-activatable nanoparticle with signal-amplification capabilities for noninvasive imaging of tumour malignancy. Nat. Nanotechnol. 2016, 11, 724–732.CrossRefGoogle Scholar
  2. [2]
    Sowers, M. A.; McCombs, J. R.; Wang, Y.; Paletta, J. T.; Morton, S. W.; Dreaden, E. C.; Boska, M. D.; Ottaviani, M. F.; Hammond, P. T.; Rajca, A. et al. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat. Commun. 2014, 5, 5460.CrossRefGoogle Scholar
  3. [3]
    Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 2014, 5, 4206.Google Scholar
  4. [4]
    Bridot, J. L.; Faure, A. C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J. L.; Elst, L. V. et al. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 2007, 129, 5076–5084.CrossRefGoogle Scholar
  5. [5]
    Jing, L. H.; Ding, K.; Kershaw, S. V.; Kempson, I. M.; Rogach, A. L.; Gao, M. Y. Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv. Mater. 2014, 26, 6367–6386.CrossRefGoogle Scholar
  6. [6]
    Leng, Y. K.; Wu, W. J.; Li, L.; Lin, K.; Sun, K.; Chen, X. Y.; Li, W. W. Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection. Adv. Funct. Mater. 2016, 26, 7581–7589.CrossRefGoogle Scholar
  7. [7]
    Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.CrossRefGoogle Scholar
  8. [8]
    Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-shull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723–730.CrossRefGoogle Scholar
  9. [9]
    Diao, S.; Hong, G. S.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. J. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 2015, 8, 3027–3034.CrossRefGoogle Scholar
  10. [10]
    Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.CrossRefGoogle Scholar
  11. [11]
    Yum, K.; McNicholas, T. P.; Mu, B.; Strano, M. S. Singlewalled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. J. Diabetes Sci. Technol. 2013, 7, 72–87.CrossRefGoogle Scholar
  12. [12]
    Benayas, A.; Ren, F. Q.; Carrasco, E.; Marzal, V.; del Rosal, B.; Gonfa, B. A.; Juarranz, A.; Sanz-Rodríguez, F.; Jaque, D.; García-Solé, J. et al. PbS/CdS/ZnS quantum dots: A multifunctional platform for in vivo near-infrared lowsose fluorescence imaging. Adv. Funct. Mater. 2015, 25, 6650–6659.CrossRefGoogle Scholar
  13. [13]
    Pan, H.; Zhang, P. F.; Gao, D. Y.; Zhang, Y. J.; Li, P.; Liu, L. L.; Wang, C.; Wang, H. Z.; Ma, Y. F.; Cai, L. T. Noninvasive visualization of respiratory viral infection using bioorthogonal conjugated near-infrared-emitting quantum dots. ACS Nano 2014, 8, 5468–5477.CrossRefGoogle Scholar
  14. [14]
    Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818–9821.CrossRefGoogle Scholar
  15. [15]
    Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872–6879.CrossRefGoogle Scholar
  16. [16]
    Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second nearinfrared window. ACS Nano 2012, 6, 3695–3702.CrossRefGoogle Scholar
  17. [17]
    Hu, R.; Law, W. C.; Lin, G. M.; Ye, L.; Liu, J. W.; Liu, J.; Reynolds, J. L.; Yong, K. T. PEGylated phospholipid micelleencapsulated near-infrared PbS quantum dots for in vitro and in vivo bioimaging. Theranostics 2012, 2, 723–733.CrossRefGoogle Scholar
  18. [18]
    Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.CrossRefGoogle Scholar
  19. [19]
    Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; de la Cruz, M. D. C. I.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E. et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 2014, 10, 1141–1154.CrossRefGoogle Scholar
  20. [20]
    Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1,525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086–12090.CrossRefGoogle Scholar
  21. [21]
    Sun, L. D.; Wang, Y. F.; Yan, C. H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra. Acc. Chem. Res. 2014, 47, 1001–1009.CrossRefGoogle Scholar
  22. [22]
    Villa, I.; Vedda, A.; Cantarelli, I. X.; Pedroni, M.; Piccinelli, F.; Bettinelli, M.; Speghini, A.; Quintanilla, M.; Vetrone, F.; Rocha, U. et al. 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 2015, 8, 649–665.CrossRefGoogle Scholar
  23. [23]
    Wang, Z.; Zhang, P.; Yuan, Q. H.; Xu, X.; Lei, P. P.; Liu, X. L.; Su, Y.; Dong, L. L.; Feng, J.; Zhang, H. J. Nd3+- sensitized NaLuF4 luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation. Nanoscale 2015, 7, 17861–17870.CrossRefGoogle Scholar
  24. [24]
    Jiang, X. Y.; Cao, C.; Feng, W.; Li, F. Y. Nd3+-doped LiYF4 nanocrystals for bio-imaging in the second near-infrared window. J. Mater. Chem. B 2016, 4, 87–95.CrossRefGoogle Scholar
  25. [25]
    Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.CrossRefGoogle Scholar
  26. [26]
    Naczynski, D. J.; Sun, C.; Türkcan, S.; Jenkins, C.; Koh, A. L.; Ikeda, D.; Pratx, G.; Xing, L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett. 2015, 15, 96–102.CrossRefGoogle Scholar
  27. [27]
    Jin, J. F.; Xu, Z. H.; Zhang, Y.; Gu, Y. J.; Lam, M. H. W.; Wong, W. T. Upconversion nanoparticles conjugated with Gd3+-DOTA and RGD for targeted dual-modality imaging of brain tumor xenografts. Adv. Health. Mater. 2013, 2, 1501–1512.CrossRefGoogle Scholar
  28. [28]
    Shao, C.; Li, S.; Gu, W.; Gong, N. Q.; Zhang, J.; Chen, N.; Shi, X. Y.; Ye, L. Multifunctional gadolinium-doped manganese carbonate nanoparticles for targeted MR/fluorescence imaging of tiny brain gliomas. Anal. Chem. 2015, 87, 6251–6257.CrossRefGoogle Scholar
  29. [29]
    Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J. et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 2012, 24, 1226–1231.CrossRefGoogle Scholar
  30. [30]
    Wang, J.; Wang, F.; Wang, C.; Liu, Z.; Liu, X. G. Singleband upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 10369–10372.CrossRefGoogle Scholar
  31. [31]
    Zeng, S. J.; Yi, Z. G.; Lu, W.; Qian, C.; Wang, H. B.; Rao, L.; Zeng, T. M.; Liu, H. R.; Liu, H. J.; Fei, B. et al. Simultaneous realization of phase/size manipulation, upconversion luminescence enhancement, and blood vessel imaging in multifunctional nanoprobes through transition metal Mn2+ doping. Adv. Funct. Mater. 2014, 24, 4051–4059.CrossRefGoogle Scholar
  32. [32]
    Chen, Q.T.; Wang, X.; Chen, F. H.; Zhang, Q. B.; Dong, B.; Yang, H.; Liu, G. X.; Zhu, Y. M. Functionalization of upconverted luminescent NaYF4:Yb/Er nanocrystals by folic acid-chitosan conjugates for targeted lung cancer cell imaging. J. Mater. Chem. 2011, 21, 7661–7667.CrossRefGoogle Scholar
  33. [33]
    Li, L. L.; Zhang, R. B.; Yin, L. L.; Zheng, K. Z.; Qin, W. P.; Selvin, P. R.; Lu, Y. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem., Int. Ed. 2012, 51, 6121–6125.CrossRefGoogle Scholar
  34. [34]
    Yao, C.; Wang, P. Y.; Zhou, L.; Wang, R.; Li, X. M.; Zhao, D. Y.; Zhang, F. Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging. Anal. Chem. 2014, 86, 9749–9757.CrossRefGoogle Scholar
  35. [35]
    Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.CrossRefGoogle Scholar
  36. [36]
    Cao, L. M.; Li, B. B.; Yi, P. W.; Zhang, H. L.; Dai, J. W.; Tan, B.; Deng, Z. W. The interplay of T 1- and T 2-relaxation on T 1-weighted MRI of hMSCs induced by Gd-DOTApeptides. Biomaterials 2014, 35, 4168–4174.CrossRefGoogle Scholar
  37. [37]
    Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M. T.; Quinones-Hinojosa, A. et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 2011, 133, 2955–2961.CrossRefGoogle Scholar
  38. [38]
    Liu, J.; Tian, X. M.; Luo, N. Q.; Yang, C.; Xiao, J.; Shao, Y. Z.; Chen, X. M.; Yang, G. W.; Chen, D. H.; Li, L. Sub-10 nm monoclinic Gd2O3:Eu3+ nanoparticles as dual-modal nanoprobes for magnetic resonance and fluorescence imaging. Langmuir 2014, 30, 13005–13013.CrossRefGoogle Scholar
  39. [39]
    Johnson, N. J. J.; He, S.; Huu, V. A. N.; Almutairi, A. Compact micellization: A strategy for ultrahigh T 1 magnetic resonance contrast with gadolinium-based nanocrystals. ACS Nano 2016, 10, 8299–8307.CrossRefGoogle Scholar
  40. [40]
    Cheng, L.; Wang, C.; Ma, X. X.; Wang, Q. L.; Cheng, Y.; Wang, H.; Li, Y. G.; Liu, Z. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv. Funct. Mater. 2013, 23, 272–280.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina
  2. 2.College of SciencesShanghai UniversityShanghaiChina

Personalised recommendations