Nano Research

, Volume 11, Issue 6, pp 3182–3192 | Cite as

Morphology and property investigation of primary particulate matter particles from different sources

  • Rufan Zhang
  • Chong Liu
  • Guangmin Zhou
  • Jie Sun
  • Nian Liu
  • Po-Chun Hsu
  • Haotian Wang
  • Yongcai Qiu
  • Jie Zhao
  • Tong Wu
  • Wenting Zhao
  • Yi CuiEmail author
Research Article


Particulate matter (PM) pollution has become a major environmental concern in many developing countries. PM pollution control remains a great challenge owing to the complex sources and evolution processes of PM particles. There are two categories of PM, i.e., primary and secondary PM particles, and the primary PM emissions play a key role in the formation of PM pollution. Knowledge of primary PM particle compositions, sources, and evolution processes is of great importance to the effective control of PM pollution. In order to characterize PM particles effectively, their fundamental properties including the morphology, concentration distribution, surface chemistry, and composition must be systematically investigated. In this study, we collected and analyzed six types of PM10 and PM2.5 particles from different sources using an in situ sampling approach. The concentration distributions of PM particles were analyzed and comparative analysis of the morphologies, distributions, capture mechanisms, and compositions of PM particles was conducted using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy. We found that there were significant differences in the structures, morphologies, and capture mechanisms of PM2.5 and PM10 particles. The systematic comparative investigation in this work will benefit the study of evolution processes and the effective control of PM pollution in the future.


particulate matter 2.5 (PM2.5) source analysis nanofiber filtration property distribution characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. Yuanqing Li for fruitful discussions.

Supplementary material

12274_2017_1724_MOESM1_ESM.pdf (7 mb)
Morphology and property investigation of primary particulate matter particles from different sources


  1. [1]
    Fang, M.; Chan, C. K.; Yao, X. H. Managing air quality in a rapidly developing nation: China. Atmos. Environ. 2009, 43, 79–86.CrossRefGoogle Scholar
  2. [2]
    Seinfeld, J. H. Urban air pollution: State of the science. Science 1989, 243, 745–752.CrossRefGoogle Scholar
  3. [3]
    Zhang, R.; Jing, J.; Tao, J.; Hsu, S. C.; Wang, G.; Cao, J.; Lee, C. S. L.; Zhu, L.; Chen, Z.; Zhao, Y. et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074.CrossRefGoogle Scholar
  4. [4]
    Maricq, M. M. Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 2007, 38, 1079–1118.CrossRefGoogle Scholar
  5. [5]
    Makkonen, U.; Hellén, H.; Anttila, P.; Ferm, M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci. Total Environ. 2010, 408, 644–651.CrossRefGoogle Scholar
  6. [6]
    Betha, R.; Behera, S. N.; Balasubramanian, R. 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environ. Sci. Technol. 2014, 48, 4327–4335.CrossRefGoogle Scholar
  7. [7]
    Wu, S. W.; Deng, F. R.; Wei, H. Y.; Huang, J.; Wang, X.; Hao, Y.; Zheng, C. J.; Qin, Y.; Lv, H. B.; Shima, M. et al. Association of cardiopulmonary health effects with sourceappointed ambient fine particulate in Beijing, China: A combined analysis from the healthy volunteer natural relocation (HVNR) study. Environ. Sci. Technol. 2014, 48, 3438–3448.CrossRefGoogle Scholar
  8. [8]
    Brook, R. D.; Rajagopalan, S.; Pope III, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378.CrossRefGoogle Scholar
  9. [9]
    Anenberg, S. C.; Horowitz, L. W.; Tong, D. Q.; West, J. J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189–1195.CrossRefGoogle Scholar
  10. [10]
    Timonen, K. L.; Vanninen, E.; De Hartog, J.; Ibald-Mulli, A.; Brunekreef, B.; Gold, D. R.; Heinrich, J.; Hoek, G.; Lanki, T.; Peters, A. et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 332–341.CrossRefGoogle Scholar
  11. [11]
    Zhao, S. H.; Chen, L. Q.; Li, Y. L.; Xing, Z. Y.; Du, K. Summertime spatial variations in atmospheric particulate matter and its chemical components in different functional areas of Xiamen, China. Atmosphere 2015, 6, 234–254.CrossRefGoogle Scholar
  12. [12]
    Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43.CrossRefGoogle Scholar
  13. [13]
    Zhang, Y. Y.; Yuan, S.; Feng, X.; Li, H. W.; Zhou, J. W.; Wang, B. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J. Am. Chem. Soc. 2016, 138, 5785–5788.CrossRefGoogle Scholar
  14. [14]
    Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S. et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642–3649.CrossRefGoogle Scholar
  15. [15]
    Xu, J. W.; Liu, C.; Hsu, P. C.; Liu, K.; Zhang, R. F.; Liu, Y. Y.; Cui, Y. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett. 2016, 16, 1270–1275.CrossRefGoogle Scholar
  16. [16]
    Wang, S.; Zhao, X. L.; Yin, X.; Yu, J. Y.; Ding, B. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl. Mater. Interfaces 2016, 8, 23985–23994.CrossRefGoogle Scholar
  17. [17]
    Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.CrossRefGoogle Scholar
  18. [18]
    Gong, G. M.; Zhou, C.; Wu, J. T.; Jin, X.; Jiang, L. Nanofibrous adhesion: The twin of gecko adhesion. ACS Nano 2015, 9, 3721–3727.CrossRefGoogle Scholar
  19. [19]
    Li, P.; Zong, Y. C.; Zhang, Y. Y.; Yang, M. M.; Zhang, R. F.; Li, S. Q.; Wei, F. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Nanoscale 2013, 5, 3367–3372.CrossRefGoogle Scholar
  20. [20]
    Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561.CrossRefGoogle Scholar
  21. [21]
    Wang, C. Y.; Wu, S. Y.; Jian, M. Q.; Xie, J. R.; Xu, L. P.; Yang, X. D.; Zheng, Q. S.; Zhang, Y. Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 2016, 9, 2590–2597.CrossRefGoogle Scholar
  22. [22]
    Hildemann, L. M.; Rogge, W. F.; Cass, G. R.; Mazurek, M. A.; Simoneit, B. R. T. Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles. J. Geophys. Res. Atmos. 1996, 101, 19541–19549.CrossRefGoogle Scholar
  23. [23]
    Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C. M.; Wei, C. Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010. Atmos. Chem. Phys. 2013, 13, 7531–7549.CrossRefGoogle Scholar
  24. [24]
    Limbeck, A.; Kulmala, M.; Puxbaum, H. Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys. Res. Lett. 2003, 30, DOI: 10.1029/2003GL017738.Google Scholar
  25. [25]
    Schuetzle, D.; Cronn, D.; Crittenden, A. L.; Charlson, R. J. Molecular composition of secondary aerosol and its possible origin. Environ. Sci. Tech. 1975, 9, 838–845.CrossRefGoogle Scholar
  26. [26]
    Huang, R. J.; Zhang, Y. L.; Bozzetti, C.; Ho, K. F.; Cao, J. J.; Han, Y. M.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222.CrossRefGoogle Scholar
  27. [27]
    Wal, R. L. V.; Bryg, V. M.; Hays, M. D. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state. Anal. Chem. 2011, 83, 1924–1930.CrossRefGoogle Scholar
  28. [28]
    Jang, M.; Czoschke, N. M.; Lee, S.; Kamens, R. M. Heterogeneous atmospheric aerosol production by acidcatalyzed particle-phase reactions. Science 2002, 298, 814–817.CrossRefGoogle Scholar
  29. [29]
    Li, W. J.; Shao, L. Y.; Zhang, D. Z.; Ro, C. U.; Hu, M.; Bi, X. H.; Geng, H.; Matsuki, A.; Niu, H. Y.; Chen, J. M. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions. J. Cleaner Prod. 2015, 112, 1330–1349.CrossRefGoogle Scholar
  30. [30]
    Wang, J.; Hu, Z. M.; Chen, Y. Y.; Chen, Z. L.; Xu, S. Y. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 2013, 68, 221–229.CrossRefGoogle Scholar
  31. [31]
    Pope III, C. A.; Dockery, D. W.; Spengler, J. D.; Raizenne, M. E. Respiratory health and PM10 pollution: A daily time series analysis. Am. Rev. Respir. Dis. 1991, 144, 668–674.CrossRefGoogle Scholar
  32. [32]
    Pope III, C. A.; Schwartz, J.; Ransom, M. R. Daily mortality and PM10 pollution in Utah Valley. Arch. Environ. Health 1992, 47, 211–217.CrossRefGoogle Scholar
  33. [33]
    Pope III, C. A.; Dockery, D. W. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am. Rev. Respir. Dis. 1992, 145, 1123–1128.CrossRefGoogle Scholar
  34. [34]
    Ostro, B. D.; Hurley, S.; Lipsett, M. J. Air pollution and daily mortality in the Coachella Valley, California: A study of PM10 dominated by coarse particles. Environ. Res. 1999, 81, 231–238.CrossRefGoogle Scholar
  35. [35]
    Yue, W. S.; Li, X. L.; Liu, J. F.; Li, Y.; Yu, X. H.; Deng, B.; Wan, T. M.; Zhang, G. L.; Huang, Y. Y.; He, W. et al. Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Sci. Total Environ. 2006, 368, 916–925.CrossRefGoogle Scholar
  36. [36]
    Labrada-Delgado, G.; Aragon-Pina, A.; Campos-Ramos, A.; Castro-Romero, T.; Amador-Munoz, O.; Villalobos-Pietrini, R. Chemical and morphological characterization of PM2.5 collected during MILAGRO campaign using scanning electron microscopy. Atmos. Pollut. Res. 2012, 3, 289–300.CrossRefGoogle Scholar
  37. [37]
    Feng, X. D.; Dang, Z.; Huang, W. L.; Shao, L. Y.; Li, W. J. Microscopic morphology and size distribution of particles in PM2.5 of Guangzhou City. J. Atmos. Chem. 2009, 64, 37–51.CrossRefGoogle Scholar
  38. [38]
    Longhin, E.; Holme, J. A.; Gutzkow, K. B.; Arlt, V. M.; Kucab, J. E.; Camatini, M.; Gualtieri, M. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: Characterization of the process and possible mechanisms involved. Part. Fibre Toxicol. 2013, 10, 63.CrossRefGoogle Scholar
  39. [39]
    Deng, X. B.; Zhang, F.; Rui, W.; Long, F.; Wang, L. J.; Feng, Z. H.; Chen, D. L.; Ding, W. J. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. Vitro 2013, 27, 1762–1770.CrossRefGoogle Scholar
  40. [40]
    Hueglin, C.; Gehrig, R.; Baltensperger, U.; Gysel, M.; Monn, C.; Vonmont, H. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005, 39, 637–651.CrossRefGoogle Scholar
  41. [41]
    Lin, T. C.; Krishnaswamy, G.; Chi, D. S. Incense smoke: clinical, structural and molecular effects on airway disease. Clin. Mol. Allergy 2008, 6, 3.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Rufan Zhang
    • 1
  • Chong Liu
    • 1
  • Guangmin Zhou
    • 1
  • Jie Sun
    • 1
  • Nian Liu
    • 1
  • Po-Chun Hsu
    • 1
  • Haotian Wang
    • 1
  • Yongcai Qiu
    • 1
  • Jie Zhao
    • 1
  • Tong Wu
    • 1
  • Wenting Zhao
    • 1
  • Yi Cui
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  2. 2.Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations