Nano Research

, Volume 10, Issue 12, pp 4368–4377 | Cite as

Layered SnS sodium ion battery anodes synthesized near room temperature

  • Chuan Xia
  • Fan Zhang
  • Hanfeng Liang
  • Husam N. AlshareefEmail author
Research Article


In this report, we demonstrate a simple chemical bath deposition approach for the synthesis of layered SnS nanosheets (typically 6 nm or ∼10 layers thick) at very low temperature (40 °C). We successfully synthesized SnS/C hybrid electrodes using a solution-based carbon precursor coating with subsequent carbonization strategy. Our data showed that the ultrathin carbon shell was critical to the cycling stability of the SnS electrodes. As a result, the as-prepared binder-free SnS/C electrodes showed excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1) and stable long-term cycling performance under a high current density (345 mAh·g−1 after 500 cycles at 3 A·g−1). Our approach opens up a new route to synthesize SnS-based hybrid materials at low temperatures for energy storage and other applications. Our process will be particularly useful for chalcogenide matrix materials that are sensitive to high temperatures during solution synthesis.


SnS sodium ion battery anode one-step synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Research reported in this publication has been supported by King Abdullah University of Science and Technology (KAUST). The authors wish to thank Mr. Zhenwei Wang for his help with the AFM analysis.

Supplementary material

12274_2017_1722_MOESM1_ESM.pdf (1.5 mb)
Layered SnS sodium ion battery anodes synthesized near room temperature


  1. [1]
    Wang, Q.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Zhang, Y. Y. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 2016, 16, 6695–6700.CrossRefGoogle Scholar
  2. [2]
    Chen, Y. N.; Luo, W.; Carter, M.; Zhou, L. H.; Dai, J. Q.; Fu, K.; Lacey, S.; Li, T.; Wan, J. Y.; Han, X. G. et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 2015, 18, 205–211.CrossRefGoogle Scholar
  3. [3]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  4. [4]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  5. [5]
    Dutta, P. K.; Sen, U. K.; Mitra, S. Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv. 2014, 4, 43155–43159.CrossRefGoogle Scholar
  6. [6]
    Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energ Environ. Sci. 2013, 6, 2338–2360.CrossRefGoogle Scholar
  7. [7]
    Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600025.CrossRefGoogle Scholar
  8. [8]
    Li, H. S.; Zhu, Y.; Dong, S. Y.; Shen, L. F.; Chen, Z. J.; Zhang, X. G.; Yu, G. H. Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 2016, 28, 5753–5760.CrossRefGoogle Scholar
  9. [9]
    Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878.CrossRefGoogle Scholar
  10. [10]
    Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.CrossRefGoogle Scholar
  11. [11]
    Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.CrossRefGoogle Scholar
  12. [12]
    Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.CrossRefGoogle Scholar
  13. [13]
    Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 3408–3413.CrossRefGoogle Scholar
  14. [14]
    Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.CrossRefGoogle Scholar
  15. [15]
    Hildenbrand, D. L.; Murad, E. Dissociation energy of NaO(g) and the heat of atomization of Na2O(g). J. Chem. Phys. 1970, 53, 3403–3408.CrossRefGoogle Scholar
  16. [16]
    Wu, L.; Lu, H. Y.; Xiao, L. F.; Qian, J. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 16424–16428.CrossRefGoogle Scholar
  17. [17]
    Zhu, C. B.; Kopold, P.; Li, W. H.; van Aken, P. A.; Maier, J.; Yu, Y. A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: Case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv. Sci. 2015, 2, 1500200.CrossRefGoogle Scholar
  18. [18]
    Burton, L. A.; Colombara, D.; Abellon, R. D.; Grozema, F. C.; Peter, L. M.; Savenije, T. J.; Dennler, G.; Walsh, A. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater. 2013, 25, 4908–4916.CrossRefGoogle Scholar
  19. [19]
    Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from twodimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.CrossRefGoogle Scholar
  20. [20]
    Im, H. S.; Cho, Y. J.; Lim, Y. R.; Jung, C. S.; Jang, D. M.; Park, J.; Shojaei, F.; Kang, H. S. Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 2013, 7, 11103–11111.CrossRefGoogle Scholar
  21. [21]
    Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.CrossRefGoogle Scholar
  22. [22]
    Xie, X. Q.; Su, D. W.; Chen, S. Q.; Zhang, J. Q.; Dou, S. X.; Wang, G. X. SnS2 nanoplatelet@ graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem.–Asian J. 2014, 9, 1611–1617.CrossRefGoogle Scholar
  23. [23]
    Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603.CrossRefGoogle Scholar
  24. [24]
    Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 2015, 7, 1325–1332.CrossRefGoogle Scholar
  25. [25]
    Liu, S.; Yin, X. M.; Hao, Q. Y.; Zhang, M.; Li, L. M.; Chen, L. B.; Li, Q. H.; Wang, Y. G.; Wang, T. H. Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Mater. Lett. 2010, 64, 2350–2353.CrossRefGoogle Scholar
  26. [26]
    Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084–7089.CrossRefGoogle Scholar
  27. [27]
    Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.CrossRefGoogle Scholar
  28. [28]
    Wang, Q.; Pan, J.; Li, M.; Luo, Y. Y.; Wu, H.; Zhong, L.; Li, G. H. VO2 (B) nanosheets as a cathode material for Li-ion battery. J. Mater. Sci. Technol. 2015, 31, 630–633.CrossRefGoogle Scholar
  29. [29]
    Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 2016, 10, 10211–10219.CrossRefGoogle Scholar
  30. [30]
    Yang, W. L.; Zhang, L.; Hu, Y.; Zhong, Y. J.; Wu, H. B.; Lou, X. W. D. Microwave-assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 11501–11504.CrossRefGoogle Scholar
  31. [31]
    Reddy, N. K. Growth-temperature dependent physical properties of SnS nanocrystalline thin films. ECS J. Solid State Sci. Technol. 2013, 2, P259–P263.CrossRefGoogle Scholar
  32. [32]
    Devika, M.; Reddy, N. K.; Prashantha, M.; Ramesh, K.; Reddy, S. V.; Hahn, Y. B.; Gunasekhar, K. R. The physical properties of SnS films grown on lattice-matched and amorphous substrates. Phys. Status Solidi (A) 2010, 207, 1864–1869.CrossRefGoogle Scholar
  33. [33]
    Alam, F.; Dutta, V. Tin sulfide (SnS) nanostructured films deposited by continuous spray pyrolysis (CoSP) technique for dye-sensitized solar cells applications. Appl. Surf. Sci. 2015, 358, 491–497.CrossRefGoogle Scholar
  34. [34]
    Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Chen, Y. Z.; Peng, D. L. Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A 2012, 106, 87–91.CrossRefGoogle Scholar
  35. [35]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  36. [36]
    Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146–1151.CrossRefGoogle Scholar
  37. [37]
    Zhang, K.; Kim, H. J.; Shi, X. J.; Lee, J. T.; Choi, J. M.; Song, M. S.; Park, J. H. Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode. Inorg. Chem. 2013, 52, 9807–9812.CrossRefGoogle Scholar
  38. [38]
    Ryu, J.; Hong, D. K.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 2016, 10, 2843–2851.CrossRefGoogle Scholar
  39. [39]
    Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.CrossRefGoogle Scholar
  40. [40]
    Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 2013, 7, 1709–1717.CrossRefGoogle Scholar
  41. [41]
    Li, Z. Q.; Guo, H. C.; Qian, H. S.; Hu, Y. Facile microemulsion route to coat carbonized glucose on upconversion nanocrystals as high luminescence and biocompatible cellimaging probes. Nanotechnology 2010, 21, 315105.CrossRefGoogle Scholar
  42. [42]
    Wang, J. J.; Luo, C.; Mao, J. F.; Zhu, Y. J.; Fan, X. L.; Gao, T.; Mignerey, A. C.; Wang, C. S. Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 11476–11481.CrossRefGoogle Scholar
  43. [43]
    Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.CrossRefGoogle Scholar
  44. [44]
    Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Few-layered SnS2 on few-layered reduced graphene oxide as na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 2015, 25, 481–489.CrossRefGoogle Scholar
  45. [45]
    Zhou, N. J.; Lin, H.; Lou, S. J.; Yu, X. G.; Guo, P. J.; Manley, E. F.; Loser, S.; Hartnett, P.; Huang, H.; Wasielewski, M. R. et al. Morphology-performance relationships in highefficiency all-polymer solar cells. Adv. Energy Mater. 2014, 4, 130078.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chuan Xia
    • 1
  • Fan Zhang
    • 1
  • Hanfeng Liang
    • 1
  • Husam N. Alshareef
    • 1
    Email author
  1. 1.Materials Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations