Nano Research

, Volume 11, Issue 2, pp 1057–1068 | Cite as

Ultrasensitive detection of Ebola matrix protein in a memristor mode

  • Bergoi Ibarlucea
  • Teuku Fawzul Akbar
  • Kihyun Kim
  • Taiuk Rim
  • Chang-Ki Baek
  • Alon Ascoli
  • Ronald Tetzlaff
  • Larysa Baraban
  • Gianaurelio Cuniberti
Research Article


We demonstrate the direct biosensing of the Ebola VP40 matrix protein, using a memristor mode of a liquid-integrated nanodevice, based on a large array of honeycomb-shaped silicon nanowires. To shed more light on the principle of biodetection using memristors, we engineered the opening of the current-minima voltage gap VGAP by involving the third gap-control electrode (gate voltage, VG) into the system. The primary role of VG is to mimic the presence of the charged species of the desired sign at the active area of the sensor. We further showed the advantages of biodetection with an initially opened controlled gap (VGAP ≠ 0), which allows the detection of the lowest concentrations of the biomolecules carrying arbitrary positive or negative charges; this feature was not present in previous configurations. We compared the bio-memristor performance, in terms of its detection range and sensitivity, to that of the already-known field-effect transistor (FET) mode by operating the same device. To our knowledge, this is the first demonstration of Ebola matrix protein detection using a nanoscaled electrical sensor.


memristor biosensor capacitance honeycomb nanowires silicon nanowire field effect transistor VP40 matrix protein Ebola detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financed via the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden (CfAED) EXC 1056” and the “ICT Consilience Creative Program” (No. IITP-R0346-16-1007) supervised by the Institute for Information and Communications Technology Promotion (IITP), Republic of Korea.

Supplementary material

12274_2017_1720_MOESM1_ESM.pdf (794 kb)
Ultrasensitive detection of Ebola matrix protein in a memristor mode


  1. [1]
    Liu, J.; Xie, C.; Dai, X. C.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 2013, 110, 6694–6699.CrossRefGoogle Scholar
  2. [2]
    Zörgiebel, F. M.; Pregl, S.; Römhildt, L.; Opitz, J.; Weber, W. M.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Res. 2014, 7, 263–271.CrossRefGoogle Scholar
  3. [3]
    Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.CrossRefGoogle Scholar
  4. [4]
    Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  5. [5]
    Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604.CrossRefGoogle Scholar
  6. [6]
    Vu, X. T.; GhoshMoulick, R.; Eschermann, J. F.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sen. Actuators, B Chem. 2010, 144, 354–360.CrossRefGoogle Scholar
  7. [7]
    Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.CrossRefGoogle Scholar
  8. [8]
    Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022.CrossRefGoogle Scholar
  9. [9]
    Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.CrossRefGoogle Scholar
  10. [10]
    Daniels, J. S.; Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 2007, 19, 1239–1257.CrossRefGoogle Scholar
  11. [11]
    Sharma, R.; Deacon, S. E.; Nowak, D.; George, S. E.; Szymonik, M. P.; Tang, A. A. S.; Tomlinson, D. C.; Davies, A. G.; McPherson, M. J.; Wälti, C. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/mL sensitivity. Biosens. Bioelectron. 2016, 80, 607–613.CrossRefGoogle Scholar
  12. [12]
    Lin, Z. Y.; Chen, L. F.; Zhang, G. Y.; Liu, Q. D.; Qiu, B.; Cai, Z. W.; Chen, G. N. Label-free aptamer-based electrochemical impedance biosensor for 17ß-estradiol. Analyst 2012, 137, 819–822.CrossRefGoogle Scholar
  13. [13]
    Medina-Sánchez, M.; Ibarlucea, B.; Pérez, N.; Karnaushenko, D. D.; Weiz, S. M.; Baraban, L.; Cuniberti, G.; Schmidt, O. G. High-performance three-dimensional tubular nanomembrane sensor for DNA detection. Nano Lett. 2016, 16, 4288–4296.CrossRefGoogle Scholar
  14. [14]
    Chen, K. I.; Li, B. R.; Chen, Y. T. Silicon nanowire fieldeffect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131–154.CrossRefGoogle Scholar
  15. [15]
    Liu, S.; Guo, X. F. Carbon nanomaterials field-effecttransistor- based biosensors. NPG Asia Mater. 2012, 4, e23.CrossRefGoogle Scholar
  16. [16]
    Schütt, J.; Ibarlucea, B.; Illing, R.; Zörgiebel, F.; Pregl, S.; Nozaki, D.; Weber, W. M.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Compact nanowire sensors probe microdroplets. Nano Lett. 2016, 16, 4991–5000.CrossRefGoogle Scholar
  17. [17]
    Karnaushenko, D.; Ibarlucea, B.; Lee, S.; Lin, G.; Baraban, L.; Pregl, S.; Melzer, M.; Makarov, D.; Weber, W. M.; Mikolajick, T. et al. Light weight and flexible high-performance diagnostic platform. Adv. Healthc. Mater. 2015, 4, 1517–1525.CrossRefGoogle Scholar
  18. [18]
    Yang, Y. B.; Yang, X. D.; Zou, X. M.; Wu, S. T.; Wan, D.; Cao, A. Y.; Liao, L.; Yuan, Q.; Duan, X. F. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 2017, 27, 1604096.CrossRefGoogle Scholar
  19. [19]
    Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.CrossRefGoogle Scholar
  20. [20]
    Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71.CrossRefGoogle Scholar
  21. [21]
    Pregl, S.; Heinzig, A.; Baraban, L.; Cuniberti, G.; Mikolajick, T.; Weber, W. M. Printable parallel arrays of Si nanowire Schottky-barrier-FETs with tunable polarity for complementary logic. IEEE Trans. Nanotechnol. 2016, 15, 549–556.CrossRefGoogle Scholar
  22. [22]
    Baraban, L.; Zörgiebel, F.; Pahlke, C.; Baek, E.; Römhildt, L.; Cuniberti, G. Lab on a wire: Application of silicon nanowires for nanoscience and biotechnology. In Nanowire Field Effect Transistors: Principles and Applications; Kim, D. M.; Jeong, Y. H., Eds.; Springer: New York, 2014; pp 241–278.CrossRefGoogle Scholar
  23. [23]
    Pregl, S.; Weberk W. M.; Nozaki, D.; Kunstmann, J.; Baraban, B.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.CrossRefGoogle Scholar
  24. [24]
    Namdari, P.; Daraee, H.; Eatemadi, A. Recent advances in silicon nanowire biosensors: Synthesis methods, properties, and applications. Nanoscale Res. Lett. 2016, 11, 406.CrossRefGoogle Scholar
  25. [25]
    Shen, M. Y.; Li, B. R.; Li, Y. K. Silicon nanowire fieldeffect- transistor based biosensors: From sensitive to ultrasensitive. Biosens. Bioelectron. 2014, 60, 101–111.CrossRefGoogle Scholar
  26. [26]
    Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 7, 3405–3409.CrossRefGoogle Scholar
  27. [27]
    Gao, N.; Gao, T.; Yang, X.; Dai, X. C.; Zhou, W.; Zhang, A. Q.; Lieber, C. M. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl. Acad. Sci. USA 2016, 113, 14633–14638.CrossRefGoogle Scholar
  28. [28]
    Presnova, G.; Presnov, D.; Krupenin, V; Grigorenko, V.; Trifonov, A.; Andreeva, I.; Ignatenko, O.; Egorov, A.; Rubtsova, M. Biosensor based on a silicon nanowire fieldeffect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 2017, 88, 283–289.CrossRefGoogle Scholar
  29. [29]
    Krivitsky, V.; Zverzhinetsky, M.; Patolsky, F. Antigendissociation from antibody-modified nanotransistor sensor arrays as a direct biomarker detection method in unprocessed biosamples. Nano Lett. 2016, 16, 6272–6281.CrossRefGoogle Scholar
  30. [30]
    Ingebrandt, S. Bioelectronics: Sensing beyond the limit. Nat. Nanotechnol. 2015, 10, 734–735.CrossRefGoogle Scholar
  31. [31]
    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 2015, 10, 791–795.CrossRefGoogle Scholar
  32. [32]
    Knopfmacher, O.; Tarasov, A.; Fu, W. Y.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274.CrossRefGoogle Scholar
  33. [33]
    Chua, L. O. Memristor—The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.CrossRefGoogle Scholar
  34. [34]
    Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.CrossRefGoogle Scholar
  35. [35]
    Ascoli, A.; Slesazeck, S.; Mahne, H.; Tetzlaff, R.; Mikolajick, T. Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1165–1174.CrossRefGoogle Scholar
  36. [36]
    Ascoli, A.; Tetzlaff, R.; Chua, L. O.; Strachan, J. P.; Williams, R. S. History erase effect in a non-volatile memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 389–400.CrossRefGoogle Scholar
  37. [37]
    Carrara, S.; Sacchetto, D.; Doucey, M. A.; Baj-Rossi, C.; De Micheli, G.; Leblebici, Y. Memristive-biosensors: A new detection method by using nanofabricated memristors. Sens. Actuators B Chem. 2012, 171–172, 449–457.CrossRefGoogle Scholar
  38. [38]
    Tzouvadaki, I.; Jolly, P.; Lu, X. L.; Ingebrandt, S.; de Micheli, G.; Estrela, P.; Carrara, S. Label-free ultrasensitive memristive aptasensor. Nano Lett. 2016, 16, 4472–4476.CrossRefGoogle Scholar
  39. [39]
    Chua, L. If it’s pinched it’s a memristor. In Memristors and Memristive Systems; Tetzlaff, R., Ed.; Springer: New York, 2014; pp 17–90.CrossRefGoogle Scholar
  40. [40]
    Puppo, F.; Dave, A.; Doucey, M. A.; Sacchetto, D.; Baj-Rossi, C.; Leblebici, Y.; De Micheli, G.; Carrara, S. Memristive biosensors under varying humidity conditions. IEEE Trans. NanoBioscience 2014, 13, 19–30.CrossRefGoogle Scholar
  41. [41]
    Tzouvadaki, I.; Lu, X.; De Micheli, G.; Ingebrandt, S.; Carrara, S. Nano-fabricated memristive biosensors for biomedical applications with liquid and dried samples. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, USA, 2016, pp 295–298.Google Scholar
  42. [42]
    Goodchild, S. A.; Dooley, H.; Schoepp, R. J.; Flajnik, M.; Lonsdale, S. G. Isolation and characterisation of Ebolavirusspecific recombinant antibody fragments from murine and shark immune libraries. Mol. Immunol. 2011, 48, 2027–2037.CrossRefGoogle Scholar
  43. [43]
    Lucht, A.; Grunow, R.; Möller, P.; Feldmann, H.; Becker, S. Development, characterization and use of monoclonal VP40-antibodies for the detection of Ebola virus. J. Virol. Methods 2003, 111, 21–28.CrossRefGoogle Scholar
  44. [44]
    Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. M.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969.CrossRefGoogle Scholar
  45. [45]
    Baca, J. T.; Severns, V.; Lovato, D.; Branch, D. W.; Larson, R. S. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors 2015, 15, 8605–8614.CrossRefGoogle Scholar
  46. [46]
    Tsang, M. K.; Ye, W. W.; Wang, G. J.; Li, J. M.; Yang, M.; Hao, J. H. Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 2016, 10, 598–605.CrossRefGoogle Scholar
  47. [47]
    Elliott, L. H.; Kiley, M. P.; McCormick, J. B. Descriptive analysis of Ebola virus proteins. Virology 1985, 147, 169–176.CrossRefGoogle Scholar
  48. [48]
    Rim, T.; Kim, K.; Kim, S.; Baek, C. K.; Meyyappan, M.; Jeong, Y. H.; Lee, J. S. Improved electrical characteristics of honeycomb nanowire ISFETs. IEEE Electron Device Lett. 2013, 34, 1059–1061.CrossRefGoogle Scholar
  49. [49]
    Rim, T.; Meyyappan, M.; Baek, C. K. Optimized operation of silicon nanowire field effect transistor sensors. Nanotechnology 2014, 25, 505501.CrossRefGoogle Scholar
  50. [50]
    Marples, R. R.; Wieneke, A. A. Enterotoxins and toxic-shock syndrome toxin-1 in non-enteric staphylococcal disease. Epidemiol. Infect. 1993, 110, 477–488.CrossRefGoogle Scholar
  51. [51]
    Kim, K.; Park, C.; Kwon, D.; Kim, D.; Meyyappan, M.; Jeon, S.; Lee, J. S. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens. Bioelectron. 2016, 77, 695–701.CrossRefGoogle Scholar
  52. [52]
    Kaushik, A.; Tiwari, S.; Dev Jayant, R.; Marty, A.; Nair, M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 2016, 75, 254–272.CrossRefGoogle Scholar
  53. [53]
    Rossi, C. A.; Kearney, B. J.; Olschner, S. P.; Williams, P. L.; Robinson, C. G.; Heinrich, M. L.; Zovanyi, A. M.; Ingram, M. F.; Norwood, D. A.; Schoepp, R. J. Evaluation of ViroCyt® virus counter for rapid filovirus quantitation. Viruses 2015, 7, 857–872.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bergoi Ibarlucea
    • 1
    • 2
  • Teuku Fawzul Akbar
    • 1
  • Kihyun Kim
    • 3
  • Taiuk Rim
    • 3
  • Chang-Ki Baek
    • 3
  • Alon Ascoli
    • 4
  • Ronald Tetzlaff
    • 4
  • Larysa Baraban
    • 1
    • 2
  • Gianaurelio Cuniberti
    • 1
    • 2
  1. 1.Institute of Materials Science, Max Bergmann Center for BiomaterialsTechnische Universität DresdenDresdenGermany
  2. 2.Center for Advancing Electronics Dresden (CFAED)Technische Universität DresdenDresdenGermany
  3. 3.Department of Creative IT EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
  4. 4.Chair of Fundamentals of Electrical EngineeringTechnische Universität DresdenDresdenGermany

Personalised recommendations