Advertisement

Nano Research

, Volume 11, Issue 6, pp 3096–3105 | Cite as

Au nanocomposite enhanced electret film for triboelectric nanogenerator

  • Bao Dong Chen
  • Wei Tang
  • Chi Zhang
  • Liang Xu
  • Lai Pan Zhu
  • Lei Jing Yang
  • Chuan He
  • Jian Chen
  • Long Liu
  • Tao Zhou
  • Zhong Lin Wang
Research Article

Abstract

A triboelectric nanogenerator (TENG) with an organic nanocomposite electret thin film as the triboelectric layer for mechanical energy harvesting was investigated systematically. In combination with corona charging, a TENG was fabricated by using embedded-nanocapacitor-structure polytetrafluoroethylene (PTFE) impregnated with gold nanoparticles (Au-NPs). The output performances, stability, and durability of the TENGs with Au-PTFE nanocomposite films were characterized after being washed in water. It was found that the output current increases by 70% and the equivalent surface charge density (ESCD) reaches 85 μC/m2 in comparison to the virgin PTFE film. Such outstanding performance is likely due to the equivalent nanocapacitors between the Au-NPs and PTFE molecules, which serve as nano charge traps in the nanocomposite electret film under negative high-voltage corona charging. This work not only expands the practical applications of TENGs, but also opens up new possibilities for the development of high performance triboelectric materials.

Keywords

equivalent nanocapacitor structure polytetrafluoroethylene (PTFE) electret thin film gold nanoparticles equivalent surface charge density 

Notes

Acknowledgements

Thanks for the support from National Natural Science Foundation of China (Nos. 61405131, 51432005, 5151101243, and 51561145021), the National Key R&D Project from Minister of Science and Technology (No. 2016YFA0202704), Beijing Municipal Science & Technology Commission (No. Y3993113DF), and the “thousands talents” program for pioneer researcher and his innovation team, China.

Supplementary material

12274_2017_1716_MOESM1_ESM.pdf (444 kb)
Au nanocomposite enhanced electret film for triboelectric nanogenerator

Supplementary material, approximately 4.10 MB.

Supplementary material, approximately 2.55 MB.

Supplementary material, approximately 4.48 MB.

Supplementary material, approximately 2.99 MB.

References

  1. [1]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  2. [2]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.CrossRefGoogle Scholar
  3. [3]
    Yang, W. Q.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y. J.; Jing, Q. S.; Cao, X.; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317–11324.CrossRefGoogle Scholar
  4. [4]
    Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.CrossRefGoogle Scholar
  5. [5]
    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.CrossRefGoogle Scholar
  6. [6]
    Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2016, 29, 1606703.CrossRefGoogle Scholar
  7. [7]
    Zhang, Y.; Yang, Y.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Li, P. F.; Zhang, Z.; Wang, Z. Z. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 2015, 14, 30–48.CrossRefGoogle Scholar
  8. [8]
    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.CrossRefGoogle Scholar
  9. [9]
    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  10. [10]
    Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.CrossRefGoogle Scholar
  11. [11]
    Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.CrossRefGoogle Scholar
  12. [12]
    Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.CrossRefGoogle Scholar
  13. [13]
    Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C. Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.CrossRefGoogle Scholar
  14. [14]
    Xi, Y.; Guo, H. Y.; Zi, Y. L.; Li, X. G.; Wang, J. Deng, J. N.; Li, S. M.; Hu, C. G.; Cao, X.; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered windspeed sensor. Adv. Energy Mater. 2017, 7, 1602397.CrossRefGoogle Scholar
  15. [15]
    Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.CrossRefGoogle Scholar
  16. [16]
    Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.CrossRefGoogle Scholar
  17. [17]
    Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.CrossRefGoogle Scholar
  18. [18]
    Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.CrossRefGoogle Scholar
  19. [19]
    Ha, M.; Park, J.; Lee, Y.; Ko, H. Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 2015, 9, 3421–3427.CrossRefGoogle Scholar
  20. [20]
    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.CrossRefGoogle Scholar
  21. [21]
    Han, C. B.; Zhang, C.; Li, X. H.; Zhang, L. M.; Zhou, T.; Hu, W. G.; Wang, Z. L. Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels. Nano Energy 2014, 9, 325–333.CrossRefGoogle Scholar
  22. [22]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  23. [23]
    Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562.CrossRefGoogle Scholar
  24. [24]
    Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T. Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217–225.CrossRefGoogle Scholar
  25. [25]
    Sakane, Y.; Suzuki, Y.; Kasagi, N. The development of a high-performance perfluorinated polymer electret and its application to micro power generation. J. Micromech. Microeng. 2008, 18, 104011.CrossRefGoogle Scholar
  26. [26]
    Yu, Z. Z.; Watson, P. K.; Facci, J. S. The contact charging of PTFE by mercury: The effect of a thiophene monolayer on charge exchange. J. Phys. D Appl. Phys. 1990, 23, 1207–1211.CrossRefGoogle Scholar
  27. [27]
    Wei, X. Y.; Zhu, G.; Wang, Z. L. Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials. Nano Energy 2014, 10, 83–89.CrossRefGoogle Scholar
  28. [28]
    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.CrossRefGoogle Scholar
  29. [29]
    Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.CrossRefGoogle Scholar
  30. [30]
    Cheng, G.; Zheng, L.; Lin, Z. H.; Yang, J.; Du, Z. L.; Wang, Z. L. Multilayered-electrode-based triboelectric nanogenerators with managed output voltage and multifold enhanced charge transport. Adv. Energy Mater. 2015, 5, 1401452.CrossRefGoogle Scholar
  31. [31]
    Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C. Wang, Z. L. Harvesting water drop energy by a sequential contactelectrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.CrossRefGoogle Scholar
  32. [32]
    Wu, Y. C.; Zhong, X. D.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014, 7, 1631–1639.CrossRefGoogle Scholar
  33. [33]
    Paajanen, M.; Wegener, M.; Gerhard-Multhaupt, R. Understanding the role of the gas in the voids during corona charging of cellular electret films—A way to enhance their piezoelectricity. J. Phys. D Appl. Phys. 2001, 34, 2482–2488.CrossRefGoogle Scholar
  34. [34]
    Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.CrossRefGoogle Scholar
  35. [35]
    Doyle, W. T.; Jacobs, I. S. Effective cluster model of dielectric enhancement in metal-insulator composites. Phys. Rev. B Condens. Matter 1990, 42, 9319–9327.CrossRefGoogle Scholar
  36. [36]
    Doyle, W. T.; Jacobs, I. S. The influence of particle shape on dielectric enhancement in metal-insulator composites. J. Appl. Phys. 1992, 71, 3926–3936.CrossRefGoogle Scholar
  37. [37]
    Sessler, G. M.; West, J. E. Studies of electret charges produced on polymer films by electron bombardment. J. Polym. Sci. Part B Polym. Lett. 1969, 7, 367–370.CrossRefGoogle Scholar
  38. [38]
    Liu, C. Y.; Bard, A. J. Electrons on dielectrics and contact electrification. Chem. Phys. Lett. 2009, 480, 145–156.CrossRefGoogle Scholar
  39. [39]
    Yu, Z. Z.; Watson, P. K. Contact charge accumulation and reversal on polystyrene and PTFE films upon repeated contacts with mercury. J. Phys. D Appl. Phys. 1989, 22, 798–801.CrossRefGoogle Scholar
  40. [40]
    Yu, Z. Z.; Watson, K. Two-step model for contact charge accumulation. J. Electrostat. 2001, 51–52, 313–318.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Bao Dong Chen
    • 1
    • 2
  • Wei Tang
    • 1
    • 2
  • Chi Zhang
    • 1
    • 2
  • Liang Xu
    • 1
    • 2
  • Lai Pan Zhu
    • 1
    • 2
  • Lei Jing Yang
    • 1
    • 2
  • Chuan He
    • 1
    • 2
  • Jian Chen
    • 1
    • 2
  • Long Liu
    • 1
    • 2
  • Tao Zhou
    • 1
    • 2
  • Zhong Lin Wang
    • 1
    • 2
    • 3
  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology (NCNST)BeijingChina
  3. 3.School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations