Nano Research

, Volume 11, Issue 2, pp 988–996 | Cite as

Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis

  • Xiaoxia Wang
  • Jianmei Wang
  • Xuping SunEmail author
  • Shuang Wei
  • Liang Cui
  • Wenrong Yang
  • Jingquan LiuEmail author
Research Article


Novel hierarchical coral-like Ni-Mo sulfides on Ti mesh (denoted as HC-NiMoS/Ti) were synthesized through facile hydrothermal and subsequent sulfuration processes without any template. These non-precious HC-NiMoS/Ti hybrids were explored as bifunctional catalysts for urea-based overall water splitting, including the anodic urea oxygen evolution reaction (UOR) and cathodic hydrogen evolution reaction (HER). Due to the highly exposed active sites, excellent charge transfer ability, and good synergistic effects from multi-component reactions, the HC-NiMoS/Ti hybrid exhibited superior activity and high stability, and only a cell voltage of 1.59 V was required to deliver 10 mA·cm–2 current density in an electrolyte of 1.0 M KOH with 0.5 M urea.


urea electrolysis Ni-Mo sulfide coral-like bifunctional catalysts superior activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Qingdao Innovation Leading Expert Program, Qingdao Basic & Applied Research project (No. 15-9-1-100-jch), and the Qingdao Postdoctoral Application Research Project (No. 40601060003).

Supplementary material

12274_2017_1711_MOESM1_ESM.pdf (2.7 mb)
Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis

Supplementary material, approximately 7.65 MB.


  1. [1]
    Xiao, C. L.; Li, Y. B.; Lu, X. Y.; Zhao, C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515–3523.CrossRefGoogle Scholar
  2. [2]
    Zhou, H. Q.; Yu, F.; Sun, J. Y.; He, R.; Wang, Y. M.; Guo, C. F.; Wang, F.; Lan, Y. C.; Ren, Z. F.; Chen, S. Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 9472–9476.CrossRefGoogle Scholar
  3. [3]
    Yu, L.; Xia, B. Y.; Wang, X.; Lou, X. W. General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 92–97.CrossRefGoogle Scholar
  4. [4]
    Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.CrossRefGoogle Scholar
  5. [5]
    Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465–12469.CrossRefGoogle Scholar
  6. [6]
    Wu, M. S.; Ji, R. Y.; Zheng, Y. R. Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea. Electrochim. Acta 2014, 144, 194–199.CrossRefGoogle Scholar
  7. [7]
    Wang, L.; Li, M. T.; Huang, Z. Y.; Li, Y. M.; Qi, S. T.; Yi, C. H.; Yang, B. L. Ni-WC/C nanocluster catalysts for urea electrooxidation. J. Power Sources 2014, 264, 282–289.CrossRefGoogle Scholar
  8. [8]
    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.CrossRefGoogle Scholar
  9. [9]
    Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.CrossRefGoogle Scholar
  10. [10]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.CrossRefGoogle Scholar
  11. [11]
    Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 126, 7714–7718.CrossRefGoogle Scholar
  12. [12]
    Wang, J. M.; Yang, W. R.; Liu, J. Q. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2016, 4, 4686–4690.CrossRefGoogle Scholar
  13. [13]
    Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T.-P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.CrossRefGoogle Scholar
  14. [14]
    Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.CrossRefGoogle Scholar
  15. [15]
    Zhou, W. J.; Zhou, Y. C.; Yang, L. J.; Huang, J. L.; Ke, Y. T.; Zhou, K.; Li, L. G.; Chen, S. W. N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 1915–1919.CrossRefGoogle Scholar
  16. [16]
    Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387–392.CrossRefGoogle Scholar
  17. [17]
    Li, J. Y.; Xia, Z. M.; Zhou, X. M.; Qin, Y. B.; Ma, Y. Y.; Qu, Y. Q. Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res. 2017, 10, 814–825.CrossRefGoogle Scholar
  18. [18]
    Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 126, 12802–12807.CrossRefGoogle Scholar
  19. [19]
    Yu, J.; Li, Q. Q.; Chen, N.; Xu, C.-Y.; Zhen, L.; Wu, J. S.; Dravid, V. P. Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 27850–27858.CrossRefGoogle Scholar
  20. [20]
    Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.CrossRefGoogle Scholar
  21. [21]
    Zhang, X.; Liu, S. W.; Zang, Y. P.; Liu, R. R.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93–102.CrossRefGoogle Scholar
  22. [22]
    Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056–20059.CrossRefGoogle Scholar
  23. [23]
    Chen, W.-F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogenevolution catalysts based on non-noble metal nickelmolybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.CrossRefGoogle Scholar
  24. [24]
    Guo, J. X.; Zhu, H. F.; Sun, Y. F.; Tang, L.; Zhang, X. Boosting the lithium storage performance of MoS2 with graphene quantum dots. J. Mater. Chem. A 2016, 4, 4783–4789.CrossRefGoogle Scholar
  25. [25]
    Ding, J. B.; Zhou, Y.; Li, Y. G.; Guo, S. J.; Huang, X. Q. MoS2 nanosheet assembling superstructure with a threedimensional ion accessible site: A new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 2016, 28, 2074–2080.CrossRefGoogle Scholar
  26. [26]
    Cao, Z. K.; Duan, A. J.; Zhao, Z.; Li, J. M.; Wei, Y. C.; Jiang, G. Y.; Liu, J. A simple two-step method to synthesize the well-ordered mesoporous composite Ti-FDU-12 and its application in the hydrodesulfurization of DBT and 4,6-DMDBT. J. Mater. Chem. A 2014, 2, 19738–19749.CrossRefGoogle Scholar
  27. [27]
    Zhao, C. Y.; Wang, X.; Kong, J. H.; Ang, J. M.; Lee, P. S.; Liu, Z. L.; Lu, X. H. Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: A novel van der Waals heterostructure for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2372–2379.CrossRefGoogle Scholar
  28. [28]
    Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.CrossRefGoogle Scholar
  29. [29]
    King, R. L.; Botte, G. G. Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. J. Power Sources 2011, 196, 9579–9584.CrossRefGoogle Scholar
  30. [30]
    Yan, W.; Wang, D.; Botte, G. G. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim. Acta 2012, 61, 25–30.CrossRefGoogle Scholar
  31. [31]
    Yan, W.; Wang, D.; Diaz, L. A.; Botte, G. G. Nickel nanowires as effective catalysts for urea electro-oxidation. Electrochim. Acta 2014, 134, 266–271.CrossRefGoogle Scholar
  32. [32]
    Guo, B. J.; Yu, K.; Li, H. L.; Song, H. L.; Zhang, Y. Y.; Lei, X.; Fu, H.; Tan, Y. H.; Zhu, Z. Q. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 5517–5525.CrossRefGoogle Scholar
  33. [33]
    Liang, Y. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim. Acta 2015, 153, 456–460.CrossRefGoogle Scholar
  34. [34]
    Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 2014, 3, 36–45.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Institute for Graphene Applied Technology InnovationQingdao UniversityQingdaoChina
  2. 2.College of ChemistrySichuan UniversityChengduChina
  3. 3.School of Life and Environmental SciencesDeakin UniversityGeelongAustralia

Personalised recommendations