Advertisement

Nano Research

, Volume 11, Issue 2, pp 845–854 | Cite as

Two-photon lithography for 3D magnetic nanostructure fabrication

  • Gwilym Williams
  • Matthew Hunt
  • Benedikt Boehm
  • Andrew May
  • Michael Taverne
  • Daniel Ho
  • Sean Giblin
  • Dan Read
  • John Rarity
  • Rolf Allenspach
  • Sam Ladak
Open Access
Research Article

Abstract

Ferromagnetic materials have been utilized as recording media in data storage devices for many decades. The confinement of a material to a two-dimensional plane is a significant bottleneck in achieving ultra-high recording densities, and this has led to the proposition of three-dimensional (3D) racetrack memories that utilize domain wall propagation along the nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometries is highly challenging and is not easily achieved with standard lithography techniques. Here, we demonstrate a new approach to construct 3D magnetic nanostructures of complex geometries using a combination of two-photon lithography and electrochemical deposition. The magnetic properties are found to be intimately related to the 3D geometry of the structure, and magnetic imaging experiments provide evidence of domain wall pinning at the 3D nanostructured junction.

Keywords

magnetism spintronics nanomagnetism three-dimensional (3D) lithography 

Notes

Acknowledgements

S. L. gratefully acknowledges funding from EPSRC (Nos. EP/L006669/1, EP/P510750/1, and EP/P511122/1). JGR and Y-LDH acknowledge financial support from the ERC advanced grant 247462 QUOWSS and EPSRC grant EP/M009033/1. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7-People-2012-ITN] under grant agreement 316657 (SpinIcur). Information on the data that underpins the research reported here, including how to access them, can be found in the Cardiff University data catalogue at http://doi.org/ 10.17035/d.2017.0031438135.

Supplementary material

12274_2017_1694_MOESM1_ESM.pdf (606 kb)
Two-photon lithography for 3D magnetic nanostructure fabrication

References

  1. [1]
    Tallents, G.; Wagenaars, E.; Pert, G. Optical lithography: Lithography at EUV wavelengths. Nat. Photonics 2010, 4, 809–811.CrossRefGoogle Scholar
  2. [2]
    Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.CrossRefGoogle Scholar
  3. [3]
    Da Col, S.; Jamet, S.; Rougemaille, N.; Locatelli, A.; Mentes, T. O.; Burgos, B. S.; Afid, R.; Darques, M.; Cagnon, L.; Toussaint, J. C. et al. Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 2014, 89, 180405.CrossRefGoogle Scholar
  4. [4]
    Pylypovskyi, O. V.; Sheka, D. D.; Kravchuk, V. P.; Yershov, K. V.; Makarov, D.; Gaididei, Y. Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 2016, 6, 23316.CrossRefGoogle Scholar
  5. [5]
    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice. Phys. Rev. B 2016, 94, 064424.CrossRefGoogle Scholar
  6. [6]
    Bicelli, L. P.; Bozzini, B.; Mele, C.; D’Urzo, L. A review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 2008, 3, 356–408.Google Scholar
  7. [7]
    Ivanov, Y. P.; Chuvilin, A.; Vivas, L. G.; Kosel, J.; Chubykalo-Fesenko, O.; Vázquez, M. Single crystalline cylindrical nanowires—Toward dense 3D arrays of magnetic vortices. Sci. Rep. 2016, 6, 23844.CrossRefGoogle Scholar
  8. [8]
    da Câmara Santa Clara Gomes, T.; De La Torre Medina, J.; Lemaitre, M.; Piraux, L. Magnetic and magnetoresistive properties of 3D interconnected NiCo nanowire networks. Nanoscale Res. Lett. 2016, 11, 466.CrossRefGoogle Scholar
  9. [9]
    De Teresa, J. M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M. R. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J. Phys. D Appl. Phys. 2016, 49, 243003.CrossRefGoogle Scholar
  10. [10]
    Fernández-Pacheco, A.; Serrano-Ramón, L.; Michalik, J. M.; Ibarra, M. R.; De Teresa, J. M.; O’Brien, L.; Petit, D.; Lee, J.; Cowburn, R. P. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 2013, 3, 1492.CrossRefGoogle Scholar
  11. [11]
    Bisoyi, H. K.; Li, Q. Light-directing chiral liquid crystal nanostructures: From 1D to 3D. Acc. Chem. Res. 2014, 47, 3184–3195.CrossRefGoogle Scholar
  12. [12]
    Wang, L.; Li, Q. Stimuli-directing self-organized 3D liquidcrystalline nanostructures: From materials design to photonic applications. Adv. Funct. Mater. 2016, 26, 10–28.CrossRefGoogle Scholar
  13. [13]
    Xue, C. M.; Gao, M.; Xue, Y. H.; Zhu, L.; Dai, L. M.; Urbas, A.; Li, Q. Building 3D layer-by-layer graphene–gold nanoparticle hybrid architecture with tunable interlayer distance. J. Phys. Chem. C 2014, 118, 15332–15338.CrossRefGoogle Scholar
  14. [14]
    Wang, L. B.; Li, F. Y.; Kuang, M. N.; Gao, M.; Wang, J. X.; Huang, Y.; Jiang, L.; Song, Y. L. Interface manipulation for printing three-dimensional microstructures under magnetic guiding. Small 2015, 11, 1900–1904.CrossRefGoogle Scholar
  15. [15]
    Wei, L.; Dong, Z. C.; Kuang, M. X.; Li, Y. N.; Li, F. Y.; Jiang, L.; Song, Y. L. Printing patterned fine 3D structures by manipulating the three phase contact line. Adv. Funct. Mater. 2015, 25, 2237–2242.CrossRefGoogle Scholar
  16. [16]
    Sun, H.-B.; Kawata, S. Two-photon photopolymerization and 3D lithographic microfabrication. In NMR·3D Analysis Photopolymerization. Advances in Polymer Science; Fatkullin, N.; Ikehara, T.; Jinnai, H.; Kawata, S.; Kimmich, R.; Nishi, T.; Nishikawa, Y.; Sun, H.-B., Eds.; Springer: Berlin Heidelberg, 2004; pp169–273.Google Scholar
  17. [17]
    Cao, Y. Y.; Takeyasu, N.; Tanaka, T.; Duan, X. M.; Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 2009, 5, 1144–1148.Google Scholar
  18. [18]
    Cao, Z. H.; Zheng, M. L.; Dong, X. Z.; Jin, F.; Zhao, Z. S.; Duan, X. M. Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Appl. Phys. Lett. 2013, 102, 201108.CrossRefGoogle Scholar
  19. [19]
    MicroChemicals. Development of photoresists [Online]. http://www.microchemicals.com (accessed Mar 14, 2017).Google Scholar
  20. [20]
    Mehdizadeh, S.; Dukovic, J. O.; Andricacos, P. C.; Romankiw, L. T.; Cheh, H. Y. The influence of lithographic patterning on current distribution: A model for microfabrication by electrodeposition. J. Electrochem. Soc. 1992, 139, 78–91.CrossRefGoogle Scholar
  21. [21]
    Klar, T. A.; Wollhofen, R.; Jacak, J. Sub-Abbe resolution: from STED microscopy to STED lithography. Phys. Scr. 2014, 2014, 014049.CrossRefGoogle Scholar
  22. [22]
    Ivanov, Y. P.; Vivas, L. G.; Asenjo, A.; Chuvilin, A.; Chubykalo-Fesenko, O.; Vázquez, M. Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowire. Europhys. Lett. 2013, 102, 17009.CrossRefGoogle Scholar
  23. [23]
    Anders, S.; Padmore, H. A.; Duarte, R. M.; Renner, T.; Stammler, T.; Scholl, A.; Scheinfein, M. R.; Stöhr, J.; Séve, L.; Sinkovic, B. Photoemission electron microscope for the study of magnetic materials. Rev. Sci. Instrum. 1999, 70, 3973–3981.CrossRefGoogle Scholar
  24. [24]
    De Graef, M. Recent progress in Lorentz transmission electron microscopy. ESOMAT 2009, 01002.CrossRefGoogle Scholar
  25. [25]
    Zvezdin, A. K.; Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials; CRC Press: Boca Raton, 1997.CrossRefGoogle Scholar
  26. [26]
    Pirota, K. R.; Béron, F.; Zanchet, D.; Rocha, T. C. R.; Navas, D.; Torrejón, J.; Vazquez, M.; Knobel, M. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating. J. Appl. Phys. 2011, 109, 083919.CrossRefGoogle Scholar
  27. [27]
    Henry, Y.; Ounadjela, K.; Piraux, L.; Dubois, S.; George, J. M.; Duvail, J. L. Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur. Phys. J. B 2001, 20, 35–54.CrossRefGoogle Scholar
  28. [28]
    Xu, Y. B.; Vaz, C. A. F.; Hirohata, A.; Yao, C. C.; Lee, W. Y.; Bland, J. A. C.; Rousseaux, F.; Cambril, E.; Launois, H. Domain wall trapping probed by magnetoresistance and magnetic force microscopy in submicron ferromagnetic wire structures. J. Appl. Phys. 1999, 85, 6178–6180.CrossRefGoogle Scholar
  29. [29]
    Mueller, P.; Thiel, M.; Wegener, M. 3D direct laser writing using a 405 nm diode laser. Opt. Lett. 2014, 39, 6847–6850.CrossRefGoogle Scholar
  30. [30]
    Allenspach, R. Spin-polarized scanning electron microscopy. IBM J. Res. Dev. 2000, 44, 553–570.CrossRefGoogle Scholar

Copyright information

© The author(s) 2018

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Gwilym Williams
    • 1
  • Matthew Hunt
    • 1
  • Benedikt Boehm
    • 2
  • Andrew May
    • 1
  • Michael Taverne
    • 3
  • Daniel Ho
    • 3
  • Sean Giblin
    • 1
  • Dan Read
    • 1
  • John Rarity
    • 3
  • Rolf Allenspach
    • 2
  • Sam Ladak
    • 1
  1. 1.School of Physics and AstronomyCardiff UniversityCardiffUK
  2. 2.IBM Research - ZurichRüschlikonSwitzerland
  3. 3.Department of Electrical and Electronic EngineeringUniversity of BristolBristolUK

Personalised recommendations