Advertisement

Nano Research

, Volume 11, Issue 6, pp 3154–3163 | Cite as

Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy

  • Nannan Mao
  • Shishu Zhang
  • Jinxiong Wu
  • Huihui Tian
  • Juanxia Wu
  • Hua Xu
  • Hailin Peng
  • Lianming Tong
  • Jin Zhang
Research Article
  • 253 Downloads

Abstract

Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in microsized all-optical and optoelectronic devices.

Keywords

black phosphorus polarizing optics linear dichroism birefringence two-dimensional layered crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

J. Z. and L. T. acknowledge the funding from the National Natural Science Foundation of China (NSFC) (Nos. 21233001, 51272006, 11374355, and 21573004) and the National Basic Research Program of China (Nos. 2016YFA0200101, 2016YFA0200104, and 2015CB932400). H. X. acknowledges the funding of National Natural Science Foundation of China (No. 51502167). The authors thank X. L. for the constructive discussion.

Supplementary material

12274_2017_1690_MOESM1_ESM.pdf (2.2 mb)
Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy

References

  1. [1]
    Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.CrossRefGoogle Scholar
  2. [2]
    Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526.CrossRefGoogle Scholar
  3. [3]
    Fang, Y. R.; Sun, M. T. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light: Sci. Appl. 2015, 4, e294.CrossRefGoogle Scholar
  4. [4]
    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.CrossRefGoogle Scholar
  5. [5]
    Chen, R.; Ng, K. W.; Ko, W. S.; Parekh, D.; Lu, F. L.; Tran, T.-T. D.; Li, K.; Chang-Hasnain, C. Nanophotonic integrated circuits from nanoresonators grown on silicon. Nat. Commun. 2014, 5, 4325.CrossRefGoogle Scholar
  6. [6]
    Zhao, Y.; Belkin, M. A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870.CrossRefGoogle Scholar
  7. [7]
    Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943.CrossRefGoogle Scholar
  8. [8]
    Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2015, 26, 1169–1177.CrossRefGoogle Scholar
  9. [9]
    Bao, Q. L.; Zhang, H.; Wang, B.; Ni, Z. H.; Lim, C. H. Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415.CrossRefGoogle Scholar
  10. [10]
    Tan, Y.; He, R. Y.; Cheng, C.; Wang, D.; Chen, Y. X.; Chen, F. Polarization-dependent optical absorption of MoS2 for refractive index sensing. Sci. Rep. 2014, 4, 7523CrossRefGoogle Scholar
  11. [11]
    De Oliveira, R. E. P.; De Matos, C. J. S. Graphene based waveguide polarizers: In-depth physical analysis and relevant parameters. Sci. Rep. 2015, 5, 16949.CrossRefGoogle Scholar
  12. [12]
    Yang, J.; Wang, Z.; Wang, F.; Xu, R. J.; Tao, J.; Zhang, S.; Qin, Q. H.; Luther-Davies, B.; Jagadish, C.; Yu, Z. F. et al. Atomically thin optical lenses and gratings. Light: Sci. Appl. 2016, 5, e16046.CrossRefGoogle Scholar
  13. [13]
    Grande, M.; Bianco, G. V.; Vincenti, M. A.; De Ceglia, D.; Capezzuto, P.; Scalora, M.; D’Orazio, A.; Bruno, G. Optically transparent microwave polarizer based on quasi-metallic graphene. Sci. Rep. 2015, 5, 17083.CrossRefGoogle Scholar
  14. [14]
    Qiao, J. S.; Kong, X. H.; Hu, Z.-X.; Yang, F.; Ji, W. Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.CrossRefGoogle Scholar
  15. [15]
    Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.CrossRefGoogle Scholar
  16. [16]
    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.CrossRefGoogle Scholar
  17. [17]
    Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y.-W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/ angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.CrossRefGoogle Scholar
  18. [18]
    Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.CrossRefGoogle Scholar
  19. [19]
    Lan, S. F.; Rodrigues, S.; Kang, L.; Cai, W. S. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176–1181.CrossRefGoogle Scholar
  20. [20]
    Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H. W.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.CrossRefGoogle Scholar
  21. [21]
    Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.CrossRefGoogle Scholar
  22. [22]
    Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366–2369.CrossRefGoogle Scholar
  23. [23]
    Mao, N. N.; Wu, J. X.; Han, B. X.; Lin, J. J.; Tong, L. M.; Zhang, J. Birefringence-directed Raman selection rules in 2D black phosphorus crystals. Small 2016, 12, 2627–2633.CrossRefGoogle Scholar
  24. [24]
    Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.CrossRefGoogle Scholar
  25. [25]
    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Neto, A. H. C.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S. Edge phonons in black phosphorus. Nat. Commun. 2016, 7, 12191.CrossRefGoogle Scholar
  26. [26]
    Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Neto, A. H. C. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270–4276.CrossRefGoogle Scholar
  27. [27]
    Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.CrossRefGoogle Scholar
  28. [28]
    Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708–18715.CrossRefGoogle Scholar
  29. [29]
    Lu, J. P.; Yang, J.; Carvalho, A.; Liu, H. W.; Lu, Y. R.; Sow, C. H. Light-matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806–1815.CrossRefGoogle Scholar
  30. [30]
    Zhang, G. W.; Huang, S. Y.; Chaves, A.; Song, C. Y.; Özçelik, V. O.; Low, T.; Yan, H. G. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 2017, 8, 14071.CrossRefGoogle Scholar
  31. [31]
    Hong, T.; Chamlagain, B.; Wang, T. J.; Chuang, H.-J.; Zhou, Z. X.; Xu, Y.-Q. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale 2015, 7, 18537–18541.CrossRefGoogle Scholar
  32. [32]
    Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H.-J.; Pan, M. H.; Zhou, Z. X.; Xu, Y.-Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978–8983.CrossRefGoogle Scholar
  33. [33]
    Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.CrossRefGoogle Scholar
  34. [34]
    Wang, G. C.; Bao, L. H.; Pei, T. F.; Ma, R. S.; Zhang, Y.-Y.; Sun, L. L.; Zhang, G. Y.; Yang, H. F.; Li, J. J.; Gu, C. Z. et al. Introduction of interfacial charges to black phosphorus for a family of planar devices. Nano Lett. 2016, 16, 6870–6878.CrossRefGoogle Scholar
  35. [35]
    Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z.-X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.CrossRefGoogle Scholar
  36. [36]
    Sugai, S.; Ueda, T.; Murase, K. Pressure dependence of the lattice vibration in the orthorhombic and rhombohedral structures of black phosphorus. J. Phys. Soc. Jpn. 1981, 50, 3356–3361.CrossRefGoogle Scholar
  37. [37]
    Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080–4088.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nannan Mao
    • 1
  • Shishu Zhang
    • 1
  • Jinxiong Wu
    • 1
  • Huihui Tian
    • 1
  • Juanxia Wu
    • 1
  • Hua Xu
    • 2
  • Hailin Peng
    • 1
  • Lianming Tong
    • 1
  • Jin Zhang
    • 1
  1. 1.Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.School of Materials Science and EngineeringShaanxi Normal UniversityXi’anChina

Personalised recommendations