Advertisement

Nano Research

, Volume 11, Issue 2, pp 762–768 | Cite as

Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine

  • Chang Lu
  • Hui Li
  • Kathy Kolodziejski
  • Chaochao Dun
  • Wenxiao Huang
  • David Carroll
  • Scott M. GeyerEmail author
Research Article

Abstract

In recent years, significant attention has been paid to perovskite materials. In particular, lead triiodide-based perovskites have exhibited superb optoelectronic properties. Enhancing the stability of these materials is an essential step towards large-scale applications. In this study, by simply adding trioctylphosphine (TOP) as part of the post-synthesis treatment, we significantly enhance the stability of CsPbI3 quantum dots (QDs) in the solution phase, which otherwise decay rapidly in hours. For CsPbI3 QDs treated with TOP, the absorption and photoluminescence emission properties are unchanged over the course of weeks, and the quantum yield remains almost constant at 30% even after 1 month. The morphologies of both treated and untreated QDs are initially cubic; however, the treated QDs largely maintain their initial size and shape, while the untreated ones lose size uniformity, which is a sign of degradation. Infrared spectroscopy and X-ray photoelectron spectroscopy confirm the presence of P in the TOP-treated QDs. We insights that help to resolve the intrinsic instability issue of triiodide perovskite materials and devices.

Keywords

perovskite quantum dots ligand chemistry phase stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the support of Wake Forest University.

Supplementary material

12274_2017_1685_MOESM1_ESM.pdf (1.4 mb)
Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine

References

  1. [1]
    Brandt, R. E.; Stevanovic, V.; Ginley, D. S.; Buonassisi, T. Identifying defect-tolerant semiconductors with high minoritycarrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 2015, 5, 265–275.CrossRefGoogle Scholar
  2. [2]
    de Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683–686.CrossRefGoogle Scholar
  3. [3]
    Ma, L.; Hao, F.; Stoumpos, C. C.; Phelan, B. T.; Wasielewski, M. R.; Kanatzidis, M. G. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 2016, 138, 14750–14755.CrossRefGoogle Scholar
  4. [4]
    Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.-W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587.CrossRefGoogle Scholar
  5. [5]
    Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.CrossRefGoogle Scholar
  6. [6]
    Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.CrossRefGoogle Scholar
  7. [7]
    Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 2015, 6, 4360–4364.CrossRefGoogle Scholar
  8. [8]
    Zhang, X. Y.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green lightemitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016, 16, 1415–1420.CrossRefGoogle Scholar
  9. [9]
    Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595–4600.CrossRefGoogle Scholar
  10. [10]
    Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L.-W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.CrossRefGoogle Scholar
  11. [11]
    Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.CrossRefGoogle Scholar
  12. [12]
    Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T.-W.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865.CrossRefGoogle Scholar
  13. [13]
    Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.CrossRefGoogle Scholar
  14. [14]
    Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.CrossRefGoogle Scholar
  15. [15]
    Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W.-H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.CrossRefGoogle Scholar
  16. [16]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  17. [17]
    Ha, S. T.; Liu, X. F.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q. H. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2014, 2, 838–844.CrossRefGoogle Scholar
  18. [18]
    Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.CrossRefGoogle Scholar
  19. [19]
    Yuan, Z.; Shu, Y.; Xin, Y.; Ma, B. W. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 2016, 52, 3887–3890.CrossRefGoogle Scholar
  20. [20]
    Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.CrossRefGoogle Scholar
  21. [21]
    Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980.CrossRefGoogle Scholar
  22. [22]
    Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 2015, 6, 2452–2456.CrossRefGoogle Scholar
  23. [23]
    Li, Z.; Yang, M. J.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.CrossRefGoogle Scholar
  24. [24]
    Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746–751.CrossRefGoogle Scholar
  25. [25]
    Luo, P. F.; Xia, W.; Zhou, S. W.; Sun, L.; Cheng, J. G.; Xu, C. X.; Lu, Y. W. Solvent engineering for ambientair- processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 3603–3608.CrossRefGoogle Scholar
  26. [26]
    deQuilettes, D. W.; Koch, S.; Burke, S.; Paranji, R. K.; Shropshire, A. J.; Ziffer, M. E.; Ginger, D. S. Photoluminescence lifetimes exceeding 8 µs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 2016, 1, 438–444.CrossRefGoogle Scholar
  27. [27]
    Huang, H.; Chen, B. K.; Wang, Z. G.; Hung, T. F.; Susha, A. S.; Zhong, H. Z.; Rogach, A. L. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 2016, 7, 5699–5703.CrossRefGoogle Scholar
  28. [28]
    Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.CrossRefGoogle Scholar
  29. [29]
    Rempel, J. Y.; Trout, B. L.; Bawendi, M. G.; Jensen, K. F. Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: Implications for nanocrystalline growth. J. Phys. Chem. B 2006, 110, 18007–18016.CrossRefGoogle Scholar
  30. [30]
    Schapotschnikow, P.; Hommersom, B.; Vlugt, T. J. H. Adsorption and binding of ligands to CdSe nanocrystals. J. Phys. Chem. C 2009, 113, 12690–12698.CrossRefGoogle Scholar
  31. [31]
    Chen, S. T.; Zhang, X. L.; Zhang, Q. H.; Tan, W. H. Trioctylphosphine as both solvent and stabilizer to synthesize CdS nanorods. Nanoscale Res. Lett. 2009, 4, 1159–1165.CrossRefGoogle Scholar
  32. [32]
    Okram, G. S.; Singh, J.; Kaurav, N.; Lalla, N. P. Trioctylphosphine as self-assembly inducer. Faraday Discuss 2015, 181, 211–223.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Chang Lu
    • 1
  • Hui Li
    • 1
  • Kathy Kolodziejski
    • 1
  • Chaochao Dun
    • 2
  • Wenxiao Huang
    • 2
  • David Carroll
    • 2
  • Scott M. Geyer
    • 1
    Email author
  1. 1.Department of ChemistryWake Forest UniversityWinston-SalemUSA
  2. 2.Center for Nanotechnology and Molecular Materials, Department of PhysicsWake Forest UniversityWinston-SalemUSA

Personalised recommendations