Advertisement

Nano Research

, Volume 11, Issue 2, pp 722–730 | Cite as

High-performance multilayer WSe2 field-effect transistors with carrier type control

  • Pushpa Raj Pudasaini
  • Akinola Oyedele
  • Cheng Zhang
  • Michael G. Stanford
  • Nicholas Cross
  • Anthony T. Wong
  • Anna N. Hoffman
  • Kai Xiao
  • Gerd Duscher
  • David G. Mandrus
  • Thomas Z. Ward
  • Philip D. RackEmail author
Research Article

Abstract

In this study, high-performance multilayer WSe2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe2 thickness. The carrier type evolves with increasing WSe2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ∼4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe2 as a function of the thickness and the carrier band offsets relative to the metal contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. This work demonstrates progress towards the realization of high-performance multilayer WSe2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.

Keywords

transition metal dichalcogenide field-effect transistors carrier control plasma treatment carrier mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

P. D. R. and M. G. S. acknowledge support by U.S. Department of Energy (DOE) under Grant No. DOE DE-SC0002136. P. R. P. and D. G. M. acknowledge funding by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4416. T. Z. W. acknowledges support U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division. A. T. W. acknowledges support by Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. N. C. acknowledges support by National Science Foundation (NSF) (No. DMR- 1410940). The authors acknowledge that the device synthesis and Raman mapping were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Supplementary material

12274_2017_1681_MOESM1_ESM.pdf (1.5 mb)
High-performance multilayer WSe2 field-effect transistors with carrier type control

References

  1. [1]
    Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. et al., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 2014, 8, 1102–1120.CrossRefGoogle Scholar
  2. [2]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. et al., Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotech. 2012, 7, 699–712.CrossRefGoogle Scholar
  3. [3]
    Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. et al., Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotech. 2014, 9, 262–267.CrossRefGoogle Scholar
  4. [4]
    Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. et al., Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homojunctions, Sci. Rep. 2016, 6, 27276.CrossRefGoogle Scholar
  5. [5]
    Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2, ACS Nano 2013, 7, 791–797.CrossRefGoogle Scholar
  6. [6]
    Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2, Nat. Nanotech. 2014, 9, 111–115.CrossRefGoogle Scholar
  7. [7]
    Kumar, A.; Ahluwalia, P. K. et al., Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. B 2012, 85, 186.CrossRefGoogle Scholar
  8. [8]
    Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. et al., Physical and chemical tuning of two-dimensional transition metal dichalcogenides, Chem. Soc. Rev. 2015, 44, 2664–2680.CrossRefGoogle Scholar
  9. [9]
    Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. et al., Large area growth and electrical properties of p-type WSe2 atomic layers, Nano Lett. 2015, 15, 709–713.CrossRefGoogle Scholar
  10. [10]
    Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H.-C.; Wu, H.; Huang, Y.; Duan, X. F. et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics, Nat. Commun. 2014, 5, 5143.CrossRefGoogle Scholar
  11. [11]
    Akinwande, D.; Petrone, N.; Hone, J. et al., Two-dimensional flexible nanoelectronics, Nat. Commun. 2014, 5, 5678.CrossRefGoogle Scholar
  12. [12]
    Chuang, H.-J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M.-C.; Yan, J. Q.; Mandrus, D.; Tomá nek, D.; Zhou, Z. X. et al., High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts, Nano Lett. 2014, 14, 3594–3601.CrossRefGoogle Scholar
  13. [13]
    Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. et al., Role of metal contacts in designing highperformance monolayer n-type WSe2 field effect transistors, Nano Lett. 2013, 13, 1983–1990.CrossRefGoogle Scholar
  14. [14]
    Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. et al., Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X 2014, 4, 031005.Google Scholar
  15. [15]
    Cho, A.-J.; Park, K. C.; Kwon, J.-Y. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors. Nanoscale Res. Lett. 2015, 10, 115.CrossRefGoogle Scholar
  16. [16]
    Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y. J.; Zeng, Y. P.; Javey, A. et al., High-gain inverters based on WSe2 complementary field-effect transistors, ACS Nano 2014, 8, 4948–4953.CrossRefGoogle Scholar
  17. [17]
    Suh, J.; Park, T.-E.; Lin, D.-Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. et al., Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution, Nano Lett. 2014, 14, 6976–6982.CrossRefGoogle Scholar
  18. [18]
    Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. et al., Hopping transport through defect-induced localized states in molybdenum disulphide, Nat. Commun. 2013, 4, 2642.Google Scholar
  19. [19]
    Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. et al., Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Lett. 2013, 13, 1991–1995.CrossRefGoogle Scholar
  20. [20]
    Chen, M. K.; Nam, H.; Wi, S.; Ji, L.; Ren, X.; Bian, L. F.; Lu, S. L.; Liang, X. G. et al., Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping, Appl. Phys. Lett. 2013, 103, 142110.CrossRefGoogle Scholar
  21. [21]
    Li, Y.; Xu, C.-Y.; Hu, P. A.; Zhen, L. et al., Carrier control of MoS2 nanoflakes by functional self-assembled monolayers, ACS Nano 2013, 7, 7795–7804.CrossRefGoogle Scholar
  22. [22]
    Dolui, K.; Rungger, I.; Pemmaraju, C. D.; Sanvito, S. et al., Possible doping strategies for MoS2 monolayers: An ab initio study, Phys. Rev B 2013, 88, 075420.CrossRefGoogle Scholar
  23. [23]
    Hu, P.; Ye, J.; He, X. X.; Du, K. Z.; Zhang, K. K.; Wang, X. Z.; Xiong, Q. H.; Liu, Z.; Jiang, H.; Kloc, C. et al., Control of radiative exciton recombination by charge transfer induced surface dipoles in MoS2 and WS2 monolayers, Sci. Rep. 2016, 6, 24105.CrossRefGoogle Scholar
  24. [24]
    Wang, S. F.; Zhao, W. J.; Giustiniano, F.; Eda, G. et al., Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors, Phys. Chem. Chem. Phys. 2016, 18, 4304–4309.CrossRefGoogle Scholar
  25. [25]
    Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X.-A.; Hu, W. P.; Özyilmaz, B.; Neto, A. H. C. et al. et al., Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus, Nat. Commun. 2015, 6, 6485.CrossRefGoogle Scholar
  26. [26]
    Schmidt, H.; Giustiniano, F.; Eda, G. et al., Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects, Chem. Soc. Rev. 2015, 44, 7715–7736.CrossRefGoogle Scholar
  27. [27]
    Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. et al., High-performance chemical sensing using schottkycontacted chemical vapor deposition grown monolayer MoS2 transistors, ACS Nano 2014, 8, 5304–5314.CrossRefGoogle Scholar
  28. [28]
    Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C. S.; Song, M. et al. et al., Charge-transfer-based gas sensing using atomic-layer MoS2, Sci. Rep. 2015, 5, 8052.CrossRefGoogle Scholar
  29. [29]
    Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. et al., Air-stable surface charge transfer doping of MoS2 by benzyl viologen, J. Am. Chem. Soc. 2014, 136, 7853–7856.CrossRefGoogle Scholar
  30. [30]
    Zhao, P. D.; Kiriya, D.; Azcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y.-S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Kc, S. et al. et al., Air stable p-doping of WSe2 by covalent functionalization, ACS Nano 2014, 8, 10808–10814.CrossRefGoogle Scholar
  31. [31]
    Shi, W.; Ye, J. T.; Zhang, Y. J.; Suzuki, R.; Yoshida, M.; Miyazaki, J.; Inoue, N.; Saito, Y.; Iwasa, Y. et al., Superconductivity series in transition metal dichalcogenides by ionic gating, Sci. Rep. 2015, 5, 12534.CrossRefGoogle Scholar
  32. [32]
    Xi, X. X.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. et al., Gate tuning of electronic phase transitions in two-dimensional NbSe2, Phys. Rev. Lett. 2016, 117, 106801.CrossRefGoogle Scholar
  33. [33]
    Pudasaini, P. R.; Noh, J. H.; Wong, A. T.; Ovchinnikova, O. S.; Haglund, A. V.; Dai, S.; Ward, T. Z.; Mandrus, D.; Rack, P. D. et al., Ionic liquid activation of amorphous metal-oxide semiconductors for flexible transparent electronic devices, Adv. Funct. Mater. 2016, 26, 2820–2825.CrossRefGoogle Scholar
  34. [34]
    Jeong, J.; Aetukuri, N. B.; Passarello, D.; Conradson, S. D.; Samant, M. G.; Parkin, S. S. P. et al., Giant reversible, facetdependent, structural changes in a correlated-electron insulator induced by ionic liquid gating, Proc. Nat. Aca. Sci. USA 2015, 112, 1013–1018.CrossRefGoogle Scholar
  35. [35]
    McDonnell, S.; Azcatl, A.; Addou, R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R. M. et al., Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments, ACS Nano 2014, 8, 6265–6272.CrossRefGoogle Scholar
  36. [36]
    Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. et al., Carrier type control of WSe2 fieldeffect transistors by thickness modulation and MoO3 layer doping, Adv. Funct. Mater. 2016, 26, 4223–4230.CrossRefGoogle Scholar
  37. [37]
    Schlaf, R.; Lang, O.; Pettenkofer, C.; Jaegermann, W. et al., Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule, J. App. Phys. 1999, 85, 2732–2753.CrossRefGoogle Scholar
  38. [38]
    Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te), Phys. Rev. B 2012, 85, 033305.CrossRefGoogle Scholar
  39. [39]
    Movva, H. C. P.; Rai, A.; Kang, S.; Kim, K.; Fallahazad, B.; Taniguchi, T.; Watanabe, K.; Tutuc, E.; Banerjee, S. K. et al., High-mobility holes in dual-gated WSe2 field-effect transistors, ACS Nano 2015, 9, 10402–10410.CrossRefGoogle Scholar
  40. [40]
    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. et al., High-performance single layered WSe2 p-FETs with chemically doped contacts, Nano Lett. 2012, 12, 3788–3792.CrossRefGoogle Scholar
  41. [41]
    McDonnell, S.; Smyth, C.; Hinkle, C. L.; Wallace, R. M. et al., MoS2–titanium contact interface reactions, ACS Appl. Mater. Interfaces 2016, 8, 8289–8294.CrossRefGoogle Scholar
  42. [42]
    Smyth, C. M.; Addou, R.; McDonnell, S.; Hinkle, C. L.; Wallace, R. M. et al., Contact metal–MoS2 interfacial reactions and potential implications on MoS2-based device performance, J. Phys. Chem. C 2016, 120, 14719–14729.CrossRefGoogle Scholar
  43. [43]
    Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. et al., Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts, Nano Lett. 2016, 16, 2720–2727.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Pushpa Raj Pudasaini
    • 1
    • 2
  • Akinola Oyedele
    • 2
    • 3
  • Cheng Zhang
    • 1
    • 2
  • Michael G. Stanford
    • 1
  • Nicholas Cross
    • 1
  • Anthony T. Wong
    • 1
  • Anna N. Hoffman
    • 1
  • Kai Xiao
    • 2
  • Gerd Duscher
    • 1
    • 4
  • David G. Mandrus
    • 1
    • 4
  • Thomas Z. Ward
    • 4
  • Philip D. Rack
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of TennesseeKnoxvilleUSA
  4. 4.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations