Nano Research

, Volume 11, Issue 2, pp 696–706 | Cite as

Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates

  • Yi-Chao Zou
  • Zhi-Gang ChenEmail author
  • Enze Zhang
  • Fantai Kong
  • Yan Lu
  • Lihua Wang
  • John Drennan
  • Zhongchang Wang
  • Faxian Xiu
  • Kyeongjae Cho
  • Jin ZouEmail author
Research Article


Identification of atomic disorders and their subsequent control has proven to be a key issue in predicting, understanding, and enhancing the properties of newly emerging topological insulator materials. Here, we demonstrate direct evidence of the cation antisites in single-crystal SnBi2Te4 nanoplates grown by chemical vapor deposition, through a combination of sub-ångström-resolution imaging, quantitative image simulations, and density functional theory calculations. The results of these combined techniques revealed a recognizable amount of cation antisites between Bi and Sn, and energetic calculations revealed that such cation antisites have a low formation energy. The impact of the cation antisites was also investigated by electronic structure calculations together with transport measurement. The topological surface properties of the nanoplates were further probed by angle-dependent magnetotransport, and from the results, we observed a two-dimensional weak antilocalization effect associated with surface carriers. Our approach provides a pathway to identify the antisite defects in ternary chalcogenides and the application potential of SnBi2Te4 nanostructures in next-generation electronic and spintronic devices.


metal chalcogenide antisite defect nanoplate scanning transmission electron microscopy magnetotransport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Australian Research Council. Yichao Zou acknowledges the China Scholarship Council for providing her PhD stipend and the Graduate School of University of Queensland for providing the international travel award. Fantai Kong and Kyeongjae Cho were supported by Nano Material Technology Development Program (No. 2012M3A7B4049888) through the National Research Foundation of Korea (NRF) from the Ministry of Science, ICT and Future Planning, and Priority Research Center Program (No. 2010-0020207) through NRF from the Ministry of Education. The Australian Microscopy & Microanalysis Research Facility is acknowledged for providing characterization facilities.

Supplementary material

12274_2017_1679_MOESM1_ESM.pdf (865 kb)
Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates


  1. [1]
    Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.CrossRefGoogle Scholar
  2. [2]
    Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.CrossRefGoogle Scholar
  3. [3]
    Chen, Z. G.; Han, G.; Yang, L.; Cheng, L. N.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. 2012, 22, 535–549.CrossRefGoogle Scholar
  4. [4]
    Redfern, S. A. T.; Henderson, C. M. B.; Wood, B. J.; Harrison, R. J.; Knight, K. S. Determination of olivine cooling rates from metal-cation ordering. Nature 1996, 381, 407–409.CrossRefGoogle Scholar
  5. [5]
    Álvarez, A. D.; Xu, T.; Tütüncüoglu, G.; Demonchaux, T.; Nys, J. P.; Berthe, M.; Matteini, F.; Potts, H. A.; Troadec, D.; Patriarche, G. et al. Nonstoichiometric low-temperature grown GaAs nanowires. Nano Lett. 2015, 15, 6440–6445.CrossRefGoogle Scholar
  6. [6]
    Chung, S. Y.; Choi, S. Y.; Kim, T. H.; Lee, S. Surfaceorientation- dependent distribution of subsurface cationexchange defects in olivine-phosphate nanocrystals. ACS Nano 2015, 9, 850–859.CrossRefGoogle Scholar
  7. [7]
    Scanlon, D. O.; King, P. D. C.; Singh, R. P.; de la Torre, A.; Walker, S. M.; Balakrishnan, G.; Baumberger, F.; Catlow, C. R. A. Controlling bulk conductivity in topological insulators: Key role of anti-site defects. Adv. Mater. 2012, 24, 2154–2158.CrossRefGoogle Scholar
  8. [8]
    Dai, J. X.; West, D.; Wang, X. Y.; Wang, Y. Z.; Kwok, D.; Cheong, S. W.; Zhang, S. B.; Wu, W. D. Toward the intrinsic limit of the topological insulator Bi2S3. Phys. Rev. Lett. 2016, 117, 106401.CrossRefGoogle Scholar
  9. [9]
    Zhu, T. J.; Liu, Y. T.; Fu, C. G.; Heremans, J. P.; Snyder, J. G.; Zhao, X. B. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.CrossRefGoogle Scholar
  10. [10]
    Peranio, N.; Winkler, M.; Dürrschnabel, M.; König, J.; Eibl, O. Assessing antisite defect and impurity concentrations in Bi2Te3 based thin films by high-accuracy chemical analysis. Adv. Funct. Mater. 2013, 23, 4969–4976.CrossRefGoogle Scholar
  11. [11]
    Mehta, R. J.; Zhang, Y. L.; Zhu, H.; Parker, D. S.; Belley, M.; Singh, D. J.; Ramprasad, R.; Borca-Tasciuc, T.; Ramanath, G. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping. Nano Lett. 2012, 12, 4523–4529.CrossRefGoogle Scholar
  12. [12]
    Kim, J.; Kim, J.; Kim, K. S.; Jhi, S. H. Topological phase transition in the interaction of surface Dirac fermions in heterostructures. Phys. Rev. Lett. 2012, 109, 146601.CrossRefGoogle Scholar
  13. [13]
    Kuropatwa, B. A.; Kleinke, H. Thermoelectric properties of stoichiometric compounds in the (SnTe)x(Bi2Te3)y system. Z.Anorg. Allg. Chem. 2012, 638, 2640–2647.CrossRefGoogle Scholar
  14. [14]
    Kuropatwa, B. A.; Assoud, A.; Kleinke, H. Effects of cation site substitutions on the thermoelectric performance of layered SnBi2Te4 utilizing the triel elements Ga, In, and Tl. Z.Anorg. Allg. Chem. 2013, 639, 2411–2420.CrossRefGoogle Scholar
  15. [15]
    Shelimova, L. E.; Karpinskii, O. G.; Konstantinov, P. P.; Avilov, E. S.; Kretova, M. A.; Zemskov, V. S. Crystal structures and thermoelectric properties of layered compounds in the ATe–Bi2Te3(A = Ge, Sn, Pb) systems. Inorg. Mater. 2004, 40, 451–460.CrossRefGoogle Scholar
  16. [16]
    Zhukova, T. B.; Zaslavskii, A. I. Crystal structures of PbBi4Te7, PbBi2Te4, SnBi4Te7, SnBi2Te4, SnSb4Te7 and GeBi4Te7. Kristallografiya 1971, 16, 918.Google Scholar
  17. [17]
    Okamoto, K.; Kuroda, K.; Miyahara, H.; Miyamoto, K.; Okuda, T.; Aliev, Z. S.; Babanly, M. B.; Amiraslanov, I. R.; Shimada, K.; Namatame, H. et al. Observation of a highly spin-polarized topological surface state in GeBi2Te4. Phys. Rev. B 2012, 86, 195304.CrossRefGoogle Scholar
  18. [18]
    Casula, F.; Deiana, L.; Podda, A. Atomic arrangement in the mSnTe-nBi2Te3 compounds by electronic structure calculations. J. Phys. Condens. Matter 1991, 3, 1461.CrossRefGoogle Scholar
  19. [19]
    Ledda, F.; Muntoni, C.; Serci, S.; Pellerito, L. Ordering of metal atoms in the SnTe-Bi2Te3 system. Chem. Phys. Lett. 1987, 134, 545–548.CrossRefGoogle Scholar
  20. [20]
    Shin, D.; Saparov, B.; Mitzi, D. B. Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 2017, 7, 1602366.CrossRefGoogle Scholar
  21. [21]
    Huang, F. T.; Chu, M. W.; Kung, H. H.; Lee, W. L.; Sankar, R.; Liou, S. C.; Wu, K. K.; Kuo, Y. K.; Chou, F. C. Nonstoichiometric doping and Bi antisite defect in single crystal Bi2S3. Phys. Rev. B 2012, 86, 081104.CrossRefGoogle Scholar
  22. [22]
    Chung, S. Y.; Choi, S. Y.; Yamamoto, T.; Ikuhara, Y. Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 2008, 100, 125502.CrossRefGoogle Scholar
  23. [23]
    Yang, K. S.; Setyawan, W.; Wang, S. D.; Nardelli, M. B.; Curtarolo, S. A search model for topological insulators with high-throughput robustness descriptors. Nat. Mater. 2012, 11, 614–619.CrossRefGoogle Scholar
  24. [24]
    Eremeev, S. V.; Landolt, G.; Menshchikova, T. V.; Slomski, B.; Koroteev, Y. M.; Aliev, Z. S.; Babanly, M. B.; Henk, J.; Ernst, A.; Patthey, L. et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat. Commun. 2012, 3, 635.CrossRefGoogle Scholar
  25. [25]
    Vergniory, M. G.; Menshchikova, T. V.; Silkin, I. V.; Koroteev, Y. M.; Eremeev, S. V.; Chulkov, E. V. Electronic and spin structure of a family of Sn-based ternary topological insulators. Phys. Rev. B 2015, 92, 045134.CrossRefGoogle Scholar
  26. [26]
    Papagno, M.; Eremeev, S. V.; Fujii, J.; Aliev, Z. S.; Babanly, M. B.; Mahatha, S. K.; Vobornik, I.; Mamedov, N. T.; Pacilé, D.; Chulkov, E. V. Multiple coexisting Dirac surface states in three-dimensional topological insulator PbBi6Te10. ACS Nano 2016, 10, 3518–3524.CrossRefGoogle Scholar
  27. [27]
    Kooi, B. J.; De Hosson, J. T. M. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x(x = 1, 2, 3) phase change material. J. Appl. Phys. 2002, 92, 3584–3590.CrossRefGoogle Scholar
  28. [28]
    Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 2009, 8, 263–270.CrossRefGoogle Scholar
  29. [29]
    Koch, C. T. Determination of core structure periodicity and point defect density along dislocations. Ph. D. Dissertation, Arizona State University, Phoenix, AZ, USA, 2002.Google Scholar
  30. [30]
    Wang, Z. C.; Saito, M.; McKenna, K. P.; Gu, L.; Tsukimoto, S.; Shluger, A. L.; Ikuhara, Y. Atom-resolved imaging of ordered defect superstructures at individual grain boundaries. Nature 2011, 479, 380–383.CrossRefGoogle Scholar
  31. [31]
    LeBeau, J. M.; Findlay, S. D.; Allen, L. J.; Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 2008, 100, 206101.CrossRefGoogle Scholar
  32. [32]
    Klenov, D. O.; Stemmer, S. Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 2006, 106, 889–901.CrossRefGoogle Scholar
  33. [33]
    Zhang, B.; Zhang, W.; Shen, Z. J.; Chen, Y. J.; Li, J. X.; Zhang, S. B.; Zhang, Z.; Wuttig, M.; Mazzarello, R.; Ma, E. et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 2016, 108, 191902.CrossRefGoogle Scholar
  34. [34]
    Tak, J. Y.; Lim, Y. S.; Kim, J. N.; Lee, C.; Shim, J. H.; Cho, H. K.; Park, C. H.; Seo, W. S. Thermoelectric transport properties of tetradymite-type Pb1–xSnxBi2Te4 compounds. J. Alloys Compd. 2017, 690, 966–970.CrossRefGoogle Scholar
  35. [35]
    Hong, M.; Chasapis, T. C.; Chen, Z. G.; Yang, L.; Kanatzidis, M. G.; Snyder, G. J.; Zou, J. n-type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 2016, 10, 4719–4727.CrossRefGoogle Scholar
  36. [36]
    Zhang, E. Z.; Liu, Y. W.; Wang, W. Y.; Zhang, C.; Zhou, P.; Chen, Z. G.; Zou, J.; Xiu, F. X. Magnetotransport properties of Cd3As2 nanostructures. ACS Nano 2015, 9, 8843–8850.CrossRefGoogle Scholar
  37. [37]
    Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.CrossRefGoogle Scholar
  38. [38]
    Xiu, F. X.; He, L.; Wang, Y.; Cheng, L. N.; Chang, L. T.; Lang, M. R.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W.; Chen, Z. G.; Zou, J.; Shailos, A.; Wang, K. L. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216–221.CrossRefGoogle Scholar
  39. [39]
    Akiyama, R.; Fujisawa, K.; Yamaguchi, T.; Ishikawa, R.; Kuroda, S. Two-dimensional quantum transport of multivalley (111) surface state in topological crystalline insulator SnTe thin films. Nano Res. 2016, 9, 490–498.CrossRefGoogle Scholar
  40. [40]
    Cha, J. J.; Kong, D. S.; Hong, S. S.; Analytis, J. G.; Lai, K. J.; Cui, Y. Weak antilocalization in Bi2(SexTe1–x)3 nanoribbons and nanoplates. Nano Lett. 2012, 12, 1107–1111.CrossRefGoogle Scholar
  41. [41]
    Shen, J.; Xie, Y. J.; Cha, J. J. Revealing surface states in in-doped SnTenanoplates with low bulk mobility. Nano Lett. 2015, 15, 3827–3832.CrossRefGoogle Scholar
  42. [42]
    He, H. T.; Wang, G.; Zhang, T.; Sou, I. K.; Wong, G. K. L.; Wang, J. N.; Lu, H. Z.; Shen, S. Q.; Zhang, F. C. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 2011, 106, 166805.CrossRefGoogle Scholar
  43. [43]
    Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 1980, 63, 707–710.CrossRefGoogle Scholar
  44. [44]
    Peng, L. M.; Ren, G.; Dudarev, S. L.; Whelan, M. J. Debyewaller factors and absorptive scattering factors of elemental crystals. ActaCrystallogr. A 1996, 52, 456–470.CrossRefGoogle Scholar
  45. [45]
    Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A. et al. Anharmonicity and atomic distribution of SnTe and PbTethermoelectrics. Phys. Rev. B 2014, 90, 214303.CrossRefGoogle Scholar
  46. [46]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  47. [47]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  48. [48]
    Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Yi-Chao Zou
    • 1
  • Zhi-Gang Chen
    • 1
    • 2
    Email author
  • Enze Zhang
    • 3
  • Fantai Kong
    • 4
  • Yan Lu
    • 5
  • Lihua Wang
    • 1
    • 5
  • John Drennan
    • 6
  • Zhongchang Wang
    • 7
    • 8
  • Faxian Xiu
    • 3
  • Kyeongjae Cho
    • 4
  • Jin Zou
    • 1
    • 6
    Email author
  1. 1.Materials EngineeringUniversity of QueenslandBrisbaneAustralia
  2. 2.Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldAustralia
  3. 3.Laboratory of Surface Physics and Department of Physics, and Collaborative Innovation Center of Advanced MicrostructuresFudan UniversityShanghaiChina
  4. 4.Department of Materials Science & Engineeringthe University of Texas at DallasRichardsonUSA
  5. 5.Beijing Key Lab of Microstructure and Property of Advanced Materials, Institute of Microstructure and Properties of Advanced MaterialsBeijing University of TechnologyBeijingChina
  6. 6.Centre for Microscopy and MicroanalysisUniversity of QueenslandBrisbaneAustralia
  7. 7.WPI, Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan
  8. 8.Quantum Materials, Science and Technology DepartmentInternational Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations