Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation

  • 598 Accesses

  • 7 Citations


Colloidal Au-core/Ag-shell nanorods with an asymmetric transverse cross-section and a strong octupolar plasmon resonance are synthesized by the controlled growth of Ag shells on one side of the Au cores. A largely enhanced second harmonic generation (SHG) from these asymmetric core–shell nanorods is demonstrated for the first time by tuning the dipolar and the octupolar plasmon modes to make them resonant with the fundamental and harmonic frequencies, respectively. The SHG intensity of the Au–Ag nanorods with dual-frequency resonances is enhanced by 21 times compared to that of the bare Au nanorods. The co-existence of the dipolar, quadrupolar, and octupolar radiations in the SHG is revealed. Additionally, the cellular uptake of the Au–Ag nanorods is monitored and the evolution of the membrane bleb is successfully observed by the SHG imaging. Our observations provide a strategy for enhancing the SHG of the colloidal metal nanoparticles and can have applications in chemical process monitoring and biological sensing.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. [1]

    Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

  2. [2]

    Sau, T. K.; Rogach, A. L.; Jäckel, F.; Klar, T. A.; Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010, 22, 1805–1825.

  3. [3]

    Sau, T. K.; Rogach, A. L. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.

  4. [4]

    Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

  5. [5]

    Guo, S. J.; Wang, E. K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. NanoToday 2011, 6, 240–264.

  6. [6]

    Hou, S.; Wen, T.; Zhang, H.; Liu, W. Q.; Hu, X. N.; Wang, R. Y.; Hu, Z. J.; Wu, X. C. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Res. 2014, 7, 1699–1705.

  7. [7]

    Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Res. 2013, 6, 822–835.

  8. [8]

    Tsuji, M.; Miyamae, N.; Lim, S.; Kimura, K.; Zhang, X.; Hikino, S.; Nishio, M. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Cryst. Growth Des. 2006, 6, 1801–1807.

  9. [9]

    Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725–6734.

  10. [10]

    Jiang, R. B.; Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods. Adv. Mater. 2012, 24, OP200–OP207.

  11. [11]

    Cho, E. C.; Camargo, P. H. C.; Xia, Y. N. Synthesis and characterization of noble-metal nanostructures containing gold nanorods in the center. Adv. Mater. 2010, 22, 744–748.

  12. [12]

    Okuno, Y.; Nishioka, K.; Kiya, A.; Nakashima, N.; Ishibashi, A.; Niidome, Y. Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale 2010, 2, 1489–1493.

  13. [13]

    Park, K.; Drummy, L. F.; Vaia, R. A. Ag shell morphology on Au nanorod core: Role of Ag precursor complex. J. Mater. Chem. 2011, 21, 15608–15618.

  14. [14]

    Zhu, X. Z.; Zhuo, X. L.; Li, Q.; Yang, Z.; Wang, J. F. Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability. Adv. Funct. Mater. 2016, 26, 341–352.

  15. [15]

    Wu, X. L.; Xu, L. G.; Ma, W.; Liu, L. Q.; Kuang, H.; Yan, W. J.; Wang, L. B.; Xu, C. L. Gold core-DNA-silver shell nanoparticles with intense plasmonic chiroptical activities. Adv. Funct. Mater. 2015, 25, 850–854.

  16. [16]

    Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.

  17. [17]

    He, W.; Henne, W. A.; Wei, Q. S.; Zhao, Y.; Doorneweerd, D. D.; Cheng, J.-X.; Low, P. S.; Wei, A. Two-photon luminescence imaging of Bacillus spores using peptidefunctionalized gold nanorods. Nano Res. 2008, 1, 450–456.

  18. [18]

    Nevet, A.; Berkovitch, N.; Hayat, A.; Ginzburg, P.; Ginzach, S.; Sorias, O.; Orenstein, M. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. Nano Lett. 2010, 10, 1848–1852.

  19. [19]

    Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006, 97, 017402.

  20. [20]

    Wissert, M. D.; Ilin, K. S.; Siegel, M.; Lemmer, U.; Eisler, H. J. Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation. Nano Lett. 2010, 10, 4161–4165.

  21. [21]

    Biagioni, P.; Huang, J. S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402.

  22. [22]

    Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657.

  23. [23]

    Kim, S.; Jin, J.; Kim, Y.-J.; Park, I.-Y.; Kim, Y.; Kim, S.-W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760.

  24. [24]

    Klein, M. W.; Enkrich, C.; Wegener, M.; Linden, S. Secondharmonic generation from magnetic metamaterials. Science 2006, 313, 502–504.

  25. [25]

    Kang, L.; Cui, Y. H.; Lan, S. F.; Rodrigues, S. P.; Brongersma, M. L.; Cai, W. S. Electrifying photonic metamaterials for tunable nonlinear optics. Nat. Commun. 2014, 5, 4680.

  26. [26]

    Walsh, G. F.; Dal Negro, L. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett. 2013, 13, 3111–3117.

  27. [27]

    Thyagarajan, K.; Butet, J.; Martin, O. J. F. Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett. 2013, 13, 1847–1851.

  28. [28]

    Lehr, D.; Reinhold, J.; Thiele, I.; Hartung, H.; Dietrich, K.; Menzel, C.; Pertsch, T.; Kley, E. B.; Tünnermann, A. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett. 2015, 15, 1025–1030.

  29. [29]

    Ko, K. D.; Kumar, A.; Fung, K. H.; Ambekar, R.; Liu, G. L.; Fang, N. X.; Toussaint, K. C., Jr. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett. 2011, 11, 61–65.

  30. [30]

    Benedetti, A.; Centini, M.; Bertolotti, M.; Sibilia, C. Second harmonic generation from 3D nanoantennas: On the surface and bulk contributions by far-field pattern analysis. Opt. Express 2011, 19, 26752–26767.

  31. [31]

    Zhang, Y.; Grady, N. K.; Ayala-Orozco, C.; Halas, N. J. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 2011, 11, 5519–5523.

  32. [32]

    Czaplicki, R.; Mäkitalo, J.; Siikanen, R.; Husu, H.; Lehtolahti, J.; Kuittinen, M.; Kauranen, M. Second-harmonic generation from metal nanoparticles: Resonance enhancement versus particle geometry. Nano Lett. 2015, 15, 530–534.

  33. [33]

    Salomon, A.; Zielinski, M.; Kolkowski, R.; Zyss, J.; Prior, Y. Size and shape resonances in second harmonic generation from silver nanocavities. J. Phys. Chem. C 2013, 117, 22377–22382.

  34. [34]

    Russier-Antoine, I.; Benichou, E.; Bachelier, G.; Jonin, C.; Brevet, P. F. Multipolar contributions of the second harmonic generation from silver and gold nanoparticles. J. Phys. Chem. C 2007, 111, 9044–9048.

  35. [35]

    Valev, V. K.; Silhanek, A. V.; Verellen, N.; Gillijns, W.; Van Dorpe, P.; Aktsipetrov, O. A.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; Verbiest, T. Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. Phys. Rev. Lett. 2010, 104, 127401.

  36. [36]

    Valev, V. K. Characterization of nanostructured plasmonic surfaces with second harmonic generation. Langmuir 2012, 28, 15454–15471.

  37. [37]

    Husu, H.; Siikanen, R.; Mäkitalo, J.; Lehtolahti, J.; Laukkanen, J.; Kuittinen, M.; Kauranen, M. Metamaterials with tailored nonlinear optical response. Nano Lett. 2012, 12, 673–677.

  38. [38]

    de Ceglia, D.; Vincenti, M. A.; De Angelis, C.; Locatelli, A.; Haus, J. W.; Scalora, M. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. Opt. Express 2015, 23, 1715–1729.

  39. [39]

    Butet, J.; Russier-Antoine, I.; Jonin, C.; Lascoux, N.; Benichou, E.; Brevet, P.-F. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. Nano Lett. 2012, 12, 1697–1701.

  40. [40]

    Bachelier, G.; Russier-Antoine, I.; Benichou, E.; Jonin, C.; Brevetet, P. F. Multipolar second-harmonic generation in noble metal nanoparticles. J. Opt. Soc. Am. B 2008, 25, 955–960.

  41. [41]

    Biswas, S.; Liu, X. Y.; Jarrett, J. W.; Brown, D.; Pustovit, V.; Urbas, A.; Knappenberger, K. L., Jr.; Nealey, P. F.; Vaia, R. A. Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles. Nano Lett. 2015, 15, 1836–1842.

  42. [42]

    Thyagarajan, K.; Rivier, S.; Lovera, A.; Martin, O. J. F. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt. Express 2012, 20, 12860–12865.

  43. [43]

    Gesuele, F.; Lettieri, S.; Maddalena, P.; Liscidini, M.; Andreani, L. C.; Ricciardi, C.; Ballarini, V.; Giorgis, F. Bandedge and cavity second harmonic conversion in doubly resonant microcavity. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 727–734.

  44. [44]

    Dadap, J. I.; Shan, J.; Heinz, T. F. Theory of optical second-harmonic generation from a sphere of centrosymmetric material: Small-particle limit. J. Opt. Soc. Am. B 2004, 21, 1328–1347.

  45. [45]

    Wang, B.-L.; Wang, R.; Liu, R. J.; Lu, X. H.; Zhao, J.; Li, Z.-Y. Origin of shape resonance in second-harmonic generation from metallic nanohole arrays. Sci. Rep. 2013, 3, 2358.

  46. [46]

    Li, K.; Li, X. F.; Lei, D. Y.; Wu, S. L.; Zhan, Y. H. Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires. Appl. Phys. Lett. 2014, 104, 261105.

  47. [47]

    Celebrano, M.; Wu, X. F.; Baselli, M.; Großmann, S.; Biagioni, P.; Locatelli, A.; De Angelis, C.; Cerullo, G.; Osellame, R.; Hecht, B. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 2015, 10, 412–417.

  48. [48]

    Liu, S. D.; Leong, E. S. P.; Li, G. C.; Hou, Y. D.; Deng, J.; Teng, J. H.; Ong, H. C.; Lei, D. Y. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano 2016, 10, 1442–1453.

  49. [49]

    Nappa, J.; Revillod, G.; Russier-Antoine, I.; Benichou, E.; Jonin, C.; Brevet, P. F. Electric dipole origin of the second harmonic generation of small metallic particles. Phys. Rev. B 2005, 71, 165407.

  50. [50]

    Bachelier, G.; Butet, J.; Russier-Antoine, I.; Jonin, C.; Benichou, E.; Brevet, P.-F. Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions. Phys. Rev. B 2010, 82, 235403.

  51. [51]

    Butet, J.; Bachelier, G.; Russier-Antoine, I.; Jonin, C.; Benichou, E.; Brevet, P.-F. Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys. Rev. Lett. 2010, 105, 077401.

  52. [52]

    Capretti, A.; Pecora, E. F.; Forestiere, C.; Negro, L. D.; Miano, G. Size-dependent second-harmonic generation from gold nanoparticles. Phys. Rev. B 2014, 89, 125414.

  53. [53]

    Butet, J.; Duboisset, J.; Bachelier, G.; Russier-Antoine, I.; Benichou, E.; Jonin, C.; Brevet, P.-F. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett. 2010, 10, 1717–1721.

  54. [54]

    Ray, P. C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 2010, 110, 5332–5365.

  55. [55]

    Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

  56. [56]

    Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: New York, 1998.

  57. [57]

    Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

  58. [58]

    Deng, H.-D.; Li, G.-C.; Dai, Q.-F.; Ouyang, M.; Lan, S.; Trofimov, V. A.; Lysak, T. M. Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles. Nanotechnology 2013, 24, 075201.

  59. [59]

    Dadap, J. I.; Shan, J.; Eisenthal, K. B.; Heinz, T. F. Secondharmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 1999, 83, 4045–4048.

  60. [60]

    Kujala, S.; Canfield, B. K.; Kauranen, M.; Svirko, Y.; Turunen, J. Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys. Rev. Lett. 2007, 98, 167403.

  61. [61]

    Lei, D. Y.; Fernández-Domínguez, A. I.; Sonnefraud, Y.; Appavoo, K.; Haglund, R. F., Jr.; Pendry, J. B.; Maier, S. A. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 2012, 6, 1380–1386.

  62. [62]

    Li, G. C.; Zhang, Y. L.; Jiang, J.; Luo, Y.; Lei, D. Y. Metalsubstrate- mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement. ACS Nano 2017, 11, 3067–3080.

  63. [63]

    Huff, T. B.; Hansen, M. N.; Zhao, Y.; Cheng, J. X.; Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 2007, 23, 1596–1599.

  64. [64]

    Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

  65. [65]

    Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.

  66. [66]

    Tong, L.; Cobley, C. M.; Chen, J. Y.; Xia, Y. N.; Cheng, J. X. Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew. Chem., Int. Ed. 2010, 49, 3485–3488.

Download references


We thank Jiahong Wang for assistance in sample preparations and helpful discussion. This work was supported by the National Basic Research Program of China (No. 2013CB632805), the National Natural Science Foundation of China (Nos. 11174042, 11374039, and 11604180), and China Postdoctoral Science Foundation (No. 2016M602338).

Author information

Correspondence to Jianfang Wang or Ququan Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Yang, D., Liu, X. et al. Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation. Nano Res. 11, 686–695 (2018).

Download citation


  • gold-core/silver-shell nanorods
  • asymmetric growth
  • octupole surface plasmon resonance
  • second-harmonic generation