Nano Research

, Volume 11, Issue 1, pp 287–299 | Cite as

Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor

  • Yongjian Ai
  • Zenan Hu
  • Zixing Shao
  • Li Qi
  • Lei Liu
  • Junjie Zhou
  • Hongbin SunEmail author
  • Qionglin LiangEmail author
Research Article


A novel egg-like nanosphere was designed as a long-lived catalyst and is described as Fe3O4@nSiO2-NH2-Fe2O3xBi2O3@mSiO2. The catalyst was prepared using a modified Stöber method with template-free surface-protected etching. The catalyst particle consists of a magnetic Fe3O4 core as the “yolk”, an inner silica shell bearing active Fe2O3xBi2O3 species as the “egg white”, and outer mesoporous silica as the “egg shell”. It exhibits an excellent performance in the catalytic reduction of nitro aromatics to corresponding anilines in a fixed-bed continuous-flow reactor. The reaction could be performed at 80 °C and could reach complete conversion in less than 1 min with only a 7% excess of hydrazine hydrate. The catalyst bed could be easily shifted between different substrates without cross-contamination because of the uniformity of the catalyst particles. This catalyst exhibited very good stability in the continuous-flow protocol. In the long-term reduction of p-nitrophenol with 0.5 mmol·min−1 productivity, it worked for more than 1,500 cycles without any catalytic activity loss.


magnetically immobilized continuous-flow egg-like catalytic reduction nitro compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by National Natural Science Foundation of China (Nos. 21235004, 21175080) and the Ministry of Science and Technology (No. 2013ZX09507005).

Supplementary material

12274_2017_1631_MOESM1_ESM.pdf (7.8 mb)
Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor


  1. [1]
    Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis. Angew. Chem., Int. Ed. 2011, 50, 7502–7519.CrossRefGoogle Scholar
  2. [2]
    Pastre, J. C.; Browne, D. L.; Ley, S. V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 2013, 42, 8849–8869.CrossRefGoogle Scholar
  3. [3]
    Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev. 2016, 20, 2–25.CrossRefGoogle Scholar
  4. [4]
    Wiles, C.; Watts, P. Continuous flow reactors: Aperspective. Green Chem. 2012, 14, 38–54.CrossRefGoogle Scholar
  5. [5]
    Gemoets, H. P. L.; Su, Y. H.; Shang, M. J.; Hessel, V.; Luque, R.; Noël, T. Liquid phase oxidation chemistry in continuous-flow microreactors. Chem. Soc. Rev. 2016, 45, 83–117.CrossRefGoogle Scholar
  6. [6]
    Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T.F.; Jensen, K. F.; Monbaliu, J. C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R. et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 2016, 352, 61–67.CrossRefGoogle Scholar
  7. [7]
    Tsubogo, T.; Oyamada, H. S.; Kobayashi, S. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature 2015, 520, 329–332.CrossRefGoogle Scholar
  8. [8]
    Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem., Int. Ed. 2015, 54, 6688–6728.CrossRefGoogle Scholar
  9. [9]
    He, Z.; Jamison, T. F. Continuous-flow synthesis of functionalized phenols by aerobic oxidation of grignard reagents. Angew. Chem., Int. Ed. 2014, 53, 3353–3357.CrossRefGoogle Scholar
  10. [10]
    Cantillo, D.; Kappe, C. O. Immobilized transition metals as catalysts for cross-couplings in continuous flow—A critical assessment of the reaction mechanism and metal leaching. ChemCatChem 2014, 6, 3286–3305.CrossRefGoogle Scholar
  11. [11]
    Irfan, M.; Glasnov, T. N.; Kappe, C. O. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. ChemSusChem 2011, 4, 300–316.CrossRefGoogle Scholar
  12. [12]
    Liu, X. Y.; Ünal, B.; Jensen, K. F. Heterogeneous catalysis with continuous flow microreactors. Catal. Sci. Technol. 2012, 2, 2134–2138.CrossRefGoogle Scholar
  13. [13]
    Pascanu, V.; Hansen, P. R.; Gómez, A. B.; Ayats, C.; Platero-Prats, A. E.; Johansson, M. J.; Pericàs, M. A.; Martín-Matute, B. Highly functionalized biaryls via suzuki–miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem 2015, 8, 123–130.CrossRefGoogle Scholar
  14. [14]
    Wiles, C.; Watts, P. Continuous process technology: Atool for sustainable production. Green Chem. 2014, 16, 55–62.CrossRefGoogle Scholar
  15. [15]
    White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481–494.CrossRefGoogle Scholar
  16. [16]
    Zhong, C. J.; Maye, M. M. Core–shell assembled nanoparticles as catalysts. Adv. Mater. 2001, 13, 1507–1511.CrossRefGoogle Scholar
  17. [17]
    Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed. 2008, 47, 8438–8441.CrossRefGoogle Scholar
  18. [18]
    Gai, S. L.; Yang, P. P.; Li, C. X.; Wang, W. X.; Dai, Y. L.; Niu, N.; Lin, J. Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 2010, 20, 1166–1172.CrossRefGoogle Scholar
  19. [19]
    Slowing, I. I.; Vivero-Escoto, J. L.; Trewyn, B. G.; Lin, V. S. Y. Mesoporous silica nanoparticles: Structural design and applications. J. Mater. Chem. 2010, 20, 7924–7937.CrossRefGoogle Scholar
  20. [20]
    Stoeva, S. I.; Huo, F. W.; Lee, J. S.; Mirkin, C. A. threelayer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc. 2005, 127, 15362–15363.CrossRefGoogle Scholar
  21. [21]
    Deng, Y. H.; Deng, C. H.; Qi, D. W.; Liu, C.; Liu, J.; Zhang, X. M.; Zhao, D.Y. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv. Mater. 2009, 21, 1377–1382.CrossRefGoogle Scholar
  22. [22]
    Suteewong, T.; Sai, H.; Hovden, R.; Muller, D.; Bradbury, M. S.; Gruner, S. M.; Wiesner, U. Multicompartmentmesoporous silica nanoparticles with branched shapes: An epitaxial growth mechanism. Science 2013, 340, 337–341.CrossRefGoogle Scholar
  23. [23]
    Gawande, M. B.; Monga, Y.; Zboril, R.; Sharma, R. K. Silica-decorated magnetic nanocomposites for catalytic applications. Coordin. Chem. Rev. 2015, 288, 118–143.CrossRefGoogle Scholar
  24. [24]
    Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H.; Zhao, D. Y. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.CrossRefGoogle Scholar
  25. [25]
    Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.CrossRefGoogle Scholar
  26. [26]
    Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.CrossRefGoogle Scholar
  27. [27]
    Liang, X. L.; Li, J.; Joo, J. B.; Gutiérrez, A.; Tillekaratne, A.; Lee, I.; Yin, Y. D.; Zaera, F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew. Chem., Int. Ed. 2012, 51, 8034–8036.CrossRefGoogle Scholar
  28. [28]
    Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.CrossRefGoogle Scholar
  29. [29]
    Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H. Z.; Biradar, A. V.; Peng, D. L.; Zboril, R.; Varma, R. S. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590.CrossRefGoogle Scholar
  30. [30]
    Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115–123.CrossRefGoogle Scholar
  31. [31]
    Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Miao, D. G.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions—A reviewJ. Mater. Chem. A 2015, 3, 11157–11182.CrossRefGoogle Scholar
  32. [32]
    El-Toni, A. M.; Habila, M. A.; Labis, J. P.; ALOthman, Z. A.; Alhoshan, M.; Elzatahry, A. A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures Nanoscale 2016, 8, 2510–2531.CrossRefGoogle Scholar
  33. [33]
    Jagadeesh, R.V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.CrossRefGoogle Scholar
  34. [34]
    Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.CrossRefGoogle Scholar
  35. [35]
    Zhu, K. L.; Shaver, M. P.; Thomas, S. P. Chemoselective nitro reduction and hydroamination using a single iron catalyst. Chem. Sci. 2016, 7, 3031–3035.CrossRefGoogle Scholar
  36. [36]
    Yang, B.; Zhang, Q. K.; Ma, X. Y.; Kang, J. Q.; Shi, J. M.; Tang, B. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its applicationin the hydrogenation of nitroarenes. Nano Res. 2016, 9, 1879–1890.CrossRefGoogle Scholar
  37. [37]
    Oubenali, M.; Vanucci, G.; Machado, B.; Kacimi, M.; Ziyad, M.; Faria, J.; Raspolli-Galetti, A.; Serp, P. Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts. ChemSusChem 2011, 4, 950–956.CrossRefGoogle Scholar
  38. [38]
    Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: Atrusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431.CrossRefGoogle Scholar
  39. [39]
    Zhao, P. X.; Feng, X. W.; Huang, D. S.; Yang, G. Y.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordin. Chem. Rev. 2015, 287, 114–136.CrossRefGoogle Scholar
  40. [40]
    Yu, L.; Zhang, Q.; Li, S. S.; Huang, J.; Liu, Y. M.; He, H. Y.; Cao, Y. Gold-catalyzed reductive transformation of nitro compounds using formic acid: Mild, efficient, and versatile. ChemSusChem 2015, 8, 3029–3035.CrossRefGoogle Scholar
  41. [41]
    Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt−Ni: An ideal trimetallicnanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594−11597.CrossRefGoogle Scholar
  42. [42]
    Gawande, M. B.; Rathi, A. K.; Tucek, J.; Safarova, K.; Bundaleski, N.; Teodoro, O. M. N. D.; Kvitek, L.; Varma, R. S.; Zboril, R. Magnetic gold nanocatalyst (nanocat- Fe–Au): Catalytic applications for the oxidative esterification and hydrogen transfer reactions. Green Chem. 2014, 16, 4137–4143.CrossRefGoogle Scholar
  43. [43]
    Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. NanoRes. 2015, 8, 1365–1372.Google Scholar
  44. [44]
    Jia, W. G.; Zhang, H.; Zhang, T.; Xie, D.; Ling, S.; Sheng, E. H. Half-sandwich ruthenium complexes with Schiff-base ligands: Syntheses, characterization, and catalytic activities for the reduction of nitroarenes. Organometallics 2016, 35, 503–512.CrossRefGoogle Scholar
  45. [45]
    Wang, Y.; Rong, Z. M.; Wang, Y.; Zhang, P.; Wang, Y.; Qu, J. P. Ruthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: An exploration of confinement effect. J. Catal. 2015, 329, 95–106.CrossRefGoogle Scholar
  46. [46]
    Gu, J.; Zhang, Z. Y.; Hu, P.; Ding, L. P.; Xue, N. H.; Peng, L. M.; Guo, X. F.; Lin, M.; Ding, W. P. Platinum nanoparticles encapsulated in MFI zeolite crystals by a two-step dry gel conversion method as a highly selective hydrogenation catalyst. ACS Catal. 2015, 5, 6893–6901.CrossRefGoogle Scholar
  47. [47]
    Li, Z.; Yu, R.; Huang, J. L.; Shi, Y. S.; Zhang, D. Y.; Zhong, X. Y.; Wang, D. S.; Wu, Y. E.; Li, Y. D. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 2015, 6, 8248.CrossRefGoogle Scholar
  48. [48]
    Iihama, S.; Furukawa, S.; Komatsu, T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal. 2016, 6, 742–746.CrossRefGoogle Scholar
  49. [49]
    Li, L.Y.; Zhou, C. S.; Zhao, H. X.; Wang, R. H. Spatial control of palladium nanoparticles in flexibleclick-based porous organic polymers for hydrogenationof olefins and nitrobenzene. Nano Res. 2015, 8, 709–721.CrossRefGoogle Scholar
  50. [50]
    El-Hout, S. I.; El-Sheikh, S. M.; Hassan, H. M. A.; Harraz, F. A.; Ibrahim, I. A.; El-Sharkawy, E. A. A green chemical route for synthesis of graphene supported palladium nanoparticles: Ahighly active and recyclable catalyst for reduction of nitrobenzene. Appl. Catal. A: Gen. 2015, 503, 176–185.CrossRefGoogle Scholar
  51. [51]
    Karimi, B.; Mansouri, F.; Vali, H. A highly water-dispersible/ magnetically separable palladium catalyst: Selective transfer hydrogenation or direct reductive N-formylation of nitroarenes in water. ChemPlusChem 2015, 80, 1750–1759.CrossRefGoogle Scholar
  52. [52]
    Gu, X. M.; Qi, W.; Xu, X. Z.; Sun, Z. H.; Zhang, L. Y.; Liu, W.; Pan, X. L.; Su, D. S. Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014, 6, 6609–6616.CrossRefGoogle Scholar
  53. [53]
    Jang, Y.; Kim, S.; Jun, S. W.; Kim, B. H.; Hwang, S.; Song, I. K.; Kim, B. M.; Hyeon, T. Simple one-pot synthesis of Rh–Fe3O4heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chem. Commun. 2011, 47, 3601–3603.CrossRefGoogle Scholar
  54. [54]
    Ganji, S.; Enumula, S. S.; Marella, R. K.; Rao, K. S. R.; Burri, D. R. RhNPs/SBA-NH2: Ahigh-performance catalyst for aqueous phase reduction of nitroarenes to aminoarenes at room temperature. Catal. Sci. Technol. 2014, 4, 1813–1819.CrossRefGoogle Scholar
  55. [55]
    Enthaler, S.; Junge, K.; Beller, M. Sustainable metal catalysis with iron: From rust to a rising star? Angew. Chem., Int. Ed. 2008, 47, 3317–3321.CrossRefGoogle Scholar
  56. [56]
    Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chem. Commun. 2010, 46, 1769–1771.CrossRefGoogle Scholar
  57. [57]
    Jagadeesh, R.V.; Wienhöfer, G.; Westerhaus, F. A.; Surkus, A. E.; Pohl, M. M.; Junge, H.; Junge, K.; Beller, M. Efficient and highly selective iron-catalyzedreduction of nitroarenes. Chem. Commun. 2011, 47, 10972–10974.CrossRefGoogle Scholar
  58. [58]
    Cantillo, D.; Baghbanzadeh, M.; Kappe, C. O. In situ generated iron oxide nanocrystals as efficient and selective catalysts for the reduction of nitroarenes using a continuous flow method. Angew. Chem., Int. Ed. 2012, 51, 10190–10193.CrossRefGoogle Scholar
  59. [59]
    Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B. C. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem. Commun. 2012, 48, 7982–7984.CrossRefGoogle Scholar
  60. [60]
    Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. D. Core–shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816–1824.CrossRefGoogle Scholar
  61. [61]
    Moghaddam, M. M.; Pieber, B.; Glasnov, T.; Kappe, C. O. Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow. ChemSusChem 2014, 7, 3122–3131.CrossRefGoogle Scholar
  62. [62]
    Loos, P.; Alex, H.; Hassfeld, J.; Lovis, K.; Platzek, J.; Steinfeldt, N.; Hübner, S. Selective hydrogenation of halogenated nitroaromatics to haloanilines in batch and flow. Org. ProcessRes. Dev. 2016, 20, 452–464.CrossRefGoogle Scholar
  63. [63]
    Rathi, A. K.; Gawande, M. B.; Ranc, V.; Pechousek, J.; Petr, M.; Cepe, K.; Varma, R. S.; Zboril, R. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite–Pdnanocomposites.Catal. Sci. Technol. 2016, 6, 152–160.Google Scholar
  64. [64]
    Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127, 8916–8917.CrossRefGoogle Scholar
  65. [65]
    Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core–satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem., Int. Ed. 2008, 47, 8924–8928.CrossRefGoogle Scholar
  66. [66]
    Zhang, C. F.; Lu, J. M.; Li, M. R.; Wang, Y. H.; Zhang, Z.; Chen, H. J.; Wang, F. Transfer hydrogenation ofnitroarenes with hydrazine at near-room temperature catalysed by a MoO2 catalyst. Green Chem. 2016, 18, 2435–2442.CrossRefGoogle Scholar
  67. [67]
    Feng, W. H.; Dong, H. X.; Niu, L. B.; Wen, X.; Huo, L.; Bai, G. Y. A novel Fe3O4@nSiO2@NiPd–PVP@mSiO2 multi-shell core-shell nanocomposite for cinnamic acid hydrogenation in water. J. Mater. Chem. A 2015, 3, 19807–19814.CrossRefGoogle Scholar
  68. [68]
    Beswick, O.; Yuranov, I.; Alexander, D. T. L.; Kiwi-Minsker, L. Iron oxide nanoparticles supported on activated carbon fibers catalyze chemoselective reduction of nitroarenes under mild conditions. Catal. Today 2015, 249, 45–51.CrossRefGoogle Scholar
  69. [69]
    Gu, X. M.; Sun, Z. H.; Wu, S. C.; Qi, W.; Wang, H. H.; Xu, X. Z.; Su, D. S. Surfactant-free hydrothermal synthesis of sub-10 nm γ-Fe2O3–polymer porous composites with high catalytic activity for reduction of nitroarenes. Chem. Commun. 2013, 49, 10088–10090.CrossRefGoogle Scholar
  70. [70]
    Nie, R. F.; Liang, D.; Shen, L.; Gao, J.; Chen, P.; Hou, Z.Y. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles. Appl. Catal. B: Environ. 2012, 127, 212–220.CrossRefGoogle Scholar
  71. [71]
    Rauf, A.; Sher Shah, M. S. A.; Choi, G. H.; Humayoun, U. B.; Yoon, D. H.; Bae, J. W.; Park, J.; Kim, W. J.; Yoo, P. J. Facile Synthesis of hierarchically structured Bi2S3/Bi2WO6 photocatalysts for highly efficient reduction of Cr(VI). ACS SustainableChem. Eng. 2015, 3, 2847–2855.CrossRefGoogle Scholar
  72. [72]
    Feng, J.; Handa, S.; Gallou, F.; Lipshutz, B. H. Safe and selective nitro group reductions catalyzed by sustainable and recyclable Fe/ppm Pd nanoparticles in water at room temperature. Angew. Chem., Int. Ed. 2016, 55, 8979–8983.CrossRefGoogle Scholar
  73. [73]
    Sheng, T.; Qi, Y. J.; Lin, X.; Hu, P.; Sun, S. G.; Lin, W.F. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337–344.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Department of ChemistryNortheastern UniversityShenyangChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations