Advertisement

Nano Research

, Volume 10, Issue 11, pp 3826–3835 | Cite as

Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions

  • Bingqing Wang
  • Wenxian Liu
  • Weina Zhang
  • Junfeng LiuEmail author
Research Article

Abstract

Composites incorporating nanoparticles (NPs) within metal-organic frameworks (MOFs) find applications in many different fields. In particular, using MOF layers as molecular sieves built on the NPs could enable selectivity in heterogeneous catalysis. However, such composites typically exhibit low catalytic efficiency, due to the slow diffusion of the reactants in the long and narrow channels of the MOF shell. In order to improve the catalytic efficiency of these systems, here we report the fabrication of NPs incorporated in nanosized MOFs (NPs@nano-MOFs), obtained by reducing the size of the MOF crystals grown around the NPs. The crystal size of the composites was controlled by modulating the nucleation rate of the MOFs during the encapsulation of pre-synthesized and catalytically active NPs; in this way, NPs@MOF crystals smaller than 50 nm were synthesized and subsequently used as highly efficient catalysts. Due to the shorter path from the MOF surface to the active sites, the obtained Pt@nano-MOFs composites showed a higher conversion rate than their larger-sized counterparts in the synthesis of imines via cascade reaction of nitrobenzene and in the hydrogenation of olefins, while retaining the excellent size and shape selectivity associated with the molecular sieving effect of the MOF layer. The present strategy can also be applied to prepare other encapsulated nanostructures combining various types of NPs and nano-MOFs, thus highlighting the broad potential of this approach for developing optimized catalysts with high reactivity and selectivity.

Keywords

metal-organic frameworks nanoparticles heterogeneous catalysts selective catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21641005, 21604038), the Beijing Engineering Center for Hierarchical Catalysts, the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT1205), the Jiangsu Provincial Founds for Natural Science Foundation (No.BK20160975), the Program for Outstanding Young Scholars from the Organization Department of the CPC Central Committee, and the National Basic Research Program of China (973 Program) (Nos. 2014CB932104 and 2015CB932200).

Supplementary material

12274_2017_1595_MOESM1_ESM.pdf (3.8 mb)
Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions

References

  1. [1]
    Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.CrossRefGoogle Scholar
  2. [2]
    Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication ofmetal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807–1824.CrossRefGoogle Scholar
  3. [3]
    Hu, P.; Morabito, J. V.; Tsung, C. K. Core–shell catalysts of metal nanoparticle core and metal-organic framework shell. ACS Catal. 2014, 4, 4409–4419.CrossRefGoogle Scholar
  4. [4]
    Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.CrossRefGoogle Scholar
  5. [5]
    Xu, X. B.; Zhang, Z. C.; Wang, X. Well-defined metal-organic-framework hollow nanostructures for catalytic reactions involving gases. Adv. Mater. 2015, 27, 5365–5371.CrossRefGoogle Scholar
  6. [6]
    Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.CrossRefGoogle Scholar
  7. [7]
    Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D.Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.CrossRefGoogle Scholar
  8. [8]
    Liu, H. L.; Chang, L.; Bai, C. H.; Chen, L. Y.; Luque, R.; Li, Y. W. Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem., Int. Ed. 2016, 55, 5019–5023.CrossRefGoogle Scholar
  9. [9]
    Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metalorganic frameworks. J. Am. Chem. Soc. 2015, 137, 7810–7816.CrossRefGoogle Scholar
  10. [10]
    Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.CrossRefGoogle Scholar
  11. [11]
    Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.CrossRefGoogle Scholar
  12. [12]
    Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.CrossRefGoogle Scholar
  13. [13]
    Xu, Z. L.; Zhang, W. N.; Weng, J. N.; Huang, W.; Tian, D. B.; Huo, F. W. Encapsulation of metal layers within metal-organic frameworks as hybrid thin films for selective catalysis. Nano Res. 2016, 9, 158–164.CrossRefGoogle Scholar
  14. [14]
    Li, Z.; Yu, R.; Huang, J. L.; Shi, Y. S.; Zhang, D. Y.; Zhong, X. Y.; Wang, D. S.; Wu, Y.; Li, Y. D. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 2015, 6, 8248.CrossRefGoogle Scholar
  15. [15]
    Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.CrossRefGoogle Scholar
  16. [16]
    Liu, Y. Y.; Zhang, W. N.; Li, S. Z.; Cui, C. L.; Wu, J.; Chen, H. Y.; Huo, F. W. Designable yolk–shell nanoparticle@ MOFpetalousheterostructures. Chem. Mater. 2014, 26, 1119–1125.CrossRefGoogle Scholar
  17. [17]
    Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749–3753.CrossRefGoogle Scholar
  18. [18]
    Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk–shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 2012, 134, 14345–14348.CrossRefGoogle Scholar
  19. [19]
    Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.CrossRefGoogle Scholar
  20. [20]
    Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core–shell palladium nanoparticle@metalorganic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.CrossRefGoogle Scholar
  21. [21]
    Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979–5983.CrossRefGoogle Scholar
  22. [22]
    Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W.A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.CrossRefGoogle Scholar
  23. [23]
    Zhang, W. N.; Liu, Y. Y.; Lu, G.; Wang, Y.; Li, S. Z.; Cui, C. L.; Wu, J.; Xu, Z. L.; Tian, D. B.; Huang, W. et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923–2929.CrossRefGoogle Scholar
  24. [24]
    Huang, Y. B.; Shen, M.; Wang, X. S.; Shi, P. C.; Li, H. F.; Cao, R. Hierarchically micro-and mesoporous metal-organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis. J. Catal. 2015, 330, 452–457.CrossRefGoogle Scholar
  25. [25]
    Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 53, 12517–12521.Google Scholar
  26. [26]
    Liu, W.; Huang, J.; Yang, Q.; Wang, S.; Sun, X.; Zhang, W.; Liu, J.; Huo, F. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 129, 5604–5608.CrossRefGoogle Scholar
  27. [27]
    Xu, X. B.; Lu, Y.; Yang, Y.; Nosheen, F.; Wang, X. Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Sci. China Mater. 2015, 58, 370–377.CrossRefGoogle Scholar
  28. [28]
    Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429–433.CrossRefGoogle Scholar
  29. [29]
    Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.CrossRefGoogle Scholar
  30. [30]
    Rieter, W. J.; Taylor, K. M. L.; Lin, W. B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852–9853.CrossRefGoogle Scholar
  31. [31]
    Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporousnanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.CrossRefGoogle Scholar
  32. [32]
    Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem.—Eur. J. 2011, 17, 6643–6651.CrossRefGoogle Scholar
  33. [33]
    Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.CrossRefGoogle Scholar
  34. [34]
    Lu, G.; Cui, C. L.; Zhang, W. N.; Liu, Y. Y.; Huo, F. W. Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. Chem.—Asian J. 2013, 8, 69–72.CrossRefGoogle Scholar
  35. [35]
    Cravillon, J.; Münzer, S.; Lohmeier, S. J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeoliticimidazolate framework. Chem. Mater. 2009, 21, 1410–1412.CrossRefGoogle Scholar
  36. [36]
    Li, Y. S.; Bux, H.; Feldhoff, A.; Li, G. L.; Yang, W. S.; Caro, J. Controllable synthesis of metal-organic frameworks: From MOFnanorods to oriented MOF membranes. Adv. Mater. 2010, 22, 3322–3326.CrossRefGoogle Scholar
  37. [37]
    Sindoro, M.; Yanai, N.; Jee, A. Y.; Granick, S. Colloidalsized metal-organic frameworks: Synthesis and applications. Acc. Chem. Res. 2014, 47, 459–469.CrossRefGoogle Scholar
  38. [38]
    Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.CrossRefGoogle Scholar
  39. [39]
    Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.CrossRefGoogle Scholar
  40. [40]
    Garibay, S. J.; Cohen, S. M. Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. 2010, 46, 7700–7702.CrossRefGoogle Scholar
  41. [41]
    Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P. Modulated synthesis of Zr-fumarate MOF. Micropor. Mesopor. Mater. 2012, 152, 64–70.CrossRefGoogle Scholar
  42. [42]
    Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeoliticimidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.CrossRefGoogle Scholar
  43. [43]
    Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Bingqing Wang
    • 1
  • Wenxian Liu
    • 1
  • Weina Zhang
    • 2
  • Junfeng Liu
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (Nanjing Tech)NanjingChina

Personalised recommendations