Nano Research

, Volume 10, Issue 11, pp 3680–3689 | Cite as

Time-resolved impact electrochemistry for quantitative measurement of single-nanoparticle reaction kinetics

  • En Ning Saw
  • Markus Kratz
  • Kristina TschulikEmail author
Research Article


Single-nanoparticle electrochemistry has been established as a tool to characterize various nanomaterials based on the charge passed during their random impact at an electrode. Here it is demonstrated that the duration and shape of the resulting current peak can be used to quantify the reaction kinetics on a single-particle basis. Both the chemical rate constant and reaction mechanism for oxidation of single nanoparticles in different electrolytes can be determined directly from the duration of the current signal recorded in high-speed, highsensitivity current measurements. Using 29-nm-sized Ag particles in four different electrolytes as a proof of concept for this general approach, hitherto inaccessible insights into single-particle reactivity are provided. While comparable rate constants were measured for the four electrolytes at low overpotentials, transport-limited impacts at high overpotentials were found to depend strongly on the type and quantity of anions present in solution.


single-particle reactivity electrochemical kinetics nano-impact method silver reaction mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Professor Bernhard Wolfrum (TU Munich) for fruitful discussion and Sandra Schmidt for assistance in the SEM imaging. This work was financially supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the German Research Foundation (DFG) and by a NRW Rückkehrer Fellowship

Supplementary material

12274_2017_1578_MOESM1_ESM.pdf (3.5 mb)
Time-resolved impact electrochemistry for quantitative measurement of single-nanoparticle reaction kinetics


  1. [1]
    Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.CrossRefGoogle Scholar
  2. [2]
    Kang, M.; Perry, D.; Kim, Y.-R.; Colburn, A. W.; Lazenby, R. A.; Unwin, P. R. Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts. J. Am. Chem. Soc. 2015, 137, 10902–10905.CrossRefGoogle Scholar
  3. [3]
    Castañeda, A. D.; Robinson, D. A.; Stevenson, K. J.; Crooks, R. M. Electrocatalytic amplification of DNA-modified nanoparticle collisions via enzymatic digestion. Chem. Sci. 2016, 7, 6450–6457.CrossRefGoogle Scholar
  4. [4]
    Zhou, Y.-G.; Rees, N. V.; Compton, R. G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem., Int. Ed. 2011, 50, 4219–4221.CrossRefGoogle Scholar
  5. [5]
    Yakushenko, A.; Mayer, D.; Buitenhuis, J.; Offenhä usser, A.; Wolfrum, B. Electrochemical artifacts originating from nanoparticle contamination by Ag/AgCl quasi-reference electrodes. Lab Chip 2014, 14, 602–607.CrossRefGoogle Scholar
  6. [6]
    Lim, C. S.; Tan, S. M.; Sofer, Z.; Pumera, M. Impact electrochemistry of layered transition metal dichalcogenides. ACS Nano 2015, 9, 8474–8483.CrossRefGoogle Scholar
  7. [7]
    Stuart, E. J. E.; Zhou, Y.-G.; Rees, N. V.; Compton, R. G. Determining unknown concentrations of nanoparticles: The particle-impact electrochemistry of nickel and silver. RSC Adv. 2012, 2, 6879–6884.CrossRefGoogle Scholar
  8. [8]
    Hao, R.; Zhang, B. Observing electrochemical dealloying by single-nanoparticle collision. Anal. Chem. 2016, 88, 8728–8734.CrossRefGoogle Scholar
  9. [9]
    Holt, L. R.; Plowman, B. J.; Young, N. P.; Tschulik, K.; Compton, R. G. The electrochemical characterization of single core-shell nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 397–400.CrossRefGoogle Scholar
  10. [10]
    Robinson, D. A.; Kondajji, A. M.; Castañ eda, A. D.; Dasari, R.; Crooks, R. M.; Stevenson, K. J. Addressing colloidal stability for unambiguous electroanalysis of single nanoparticle impacts. J. Phys. Chem. Lett. 2016, 7, 2512–2517.CrossRefGoogle Scholar
  11. [11]
    Zhao, L.-J.; Qian, R.-C.; Ma, W.; Tian, H.; Long, Y.-T. Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision. Anal. Chem. 2016, 88, 8375–8379.CrossRefGoogle Scholar
  12. [12]
    Albrecht, T.; MacPherson, J.; Magnussen, O.; Fermin, D.; Crooks, R.; Gooding, J.; Hersbach, T.; Kanoufi, F.; Schuhmann, W.; Bentley, C. et al. Electrochemistry of single nanoparticles: General discussion. Faraday Discuss. 2016, 193, 387–413.CrossRefGoogle Scholar
  13. [13]
    Kätelhön, E.; Tanner, E. E. L.; Batchelor-McAuley, C.; Compton, R. G. Destructive nano-impacts: What information can be extracted from spike shapes? Electrochim. Acta 2016, 199, 297–304.Google Scholar
  14. [14]
    Bentley, C. L.; Kang, M.; Unwin, P. R. Time-resolved detection of surface oxide formation at individual gold nanoparticles: Role in electrocatalysis and new approach for sizing by electrochemical impacts. J. Am. Chem. Soc. 2016, 138, 12755–12758.CrossRefGoogle Scholar
  15. [15]
    Chen, C. H.; Ravenhill, E. R.; Momotenko, D.; Kim, Y. R.; Lai, S. C. S.; Unwin, P. R. Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 2015, 31, 11932–11942.CrossRefGoogle Scholar
  16. [16]
    Wan, Y.; Guo, Z. R.; Jiang, X. L.; Fang, K.; Lu, X.; Zhang, Y.; Gu, N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. Colloid Interface Sci. 2013, 394, 263–268.CrossRefGoogle Scholar
  17. [17]
    Lees, J. C.; Ellison, J.; Batchelor-McAuley, C.; Tschulik, K.; Damm, C.; Omanovic, D.; Compton, R. G. Nanoparticle impacts show high-ionic-strength citrate avoids aggregation of silver nanoparticles. ChemPhysChem 2013, 14, 3895–3897.CrossRefGoogle Scholar
  18. [18]
    Rostek, A.; Mahl, D.; Epple, M. Chemical composition of surface-functionalized gold nanoparticles. J. Nanopart. Res. 2011, 13, 4809–4814.CrossRefGoogle Scholar
  19. [19]
    Zhou, Y.-G.; Haddou, B.; Rees, N. V.; Compton, R. G. The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle-electrode impact electrochemistry. Phys. Chem. Chem. Phys. 2012, 14, 14354–14357.CrossRefGoogle Scholar
  20. [20]
    Samson, E.; Marchand, J.; Snyder, K. A. Calculation of ionic diffusion coefficients on the basis of migration test results. Mat. Struct. 2003, 36, 156–165.CrossRefGoogle Scholar
  21. [21]
    Ma, W.; Ma, H.; Chen, J.-F.; Peng, Y.-Y.; Yang, Z.-Y.; Wang, H.-F.; Ying, Y.-L.; Tian, H.; Long, Y.-T. Tracking motion trajectories of individual nanoparticles using timeresolved current traces. Chem. Sci. 2017, 8, 1854–1861.CrossRefGoogle Scholar
  22. [22]
    Ustarroz, J.; Kang, M.; Bullions, E.; Unwin, P. R. Impact and oxidation of single silver nanoparticles at electrode surfaces: One shot versus multiple events. Chem. Sci. 2017, 8, 1841–1853.CrossRefGoogle Scholar
  23. [23]
    Oja, S. M.; Robinson, D. A.; Vitti, N. J.; Edwards, M. A.; Liu, Y.-W.; White, H. S.; Zhang, B. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J. Am. Chem. Soc. 2017, 139, 708–718.CrossRefGoogle Scholar
  24. [24]
    Ngamchuea, K.; Eloul, S.; Tschulik, K.; Compton, R. G. Advancing from rules of thumb: Quantifying the effects of small density changes in mass transport to electrodes. Understanding natural convection. Anal. Chem. 2015, 87, 7226–7234.Google Scholar
  25. [25]
    Brasiliense, V.; Patel, A. N.; Martinez-Marrades, A.; Shi, J.; Chen, Y.; Combellas, C.; Tessier, G.; Kanoufi, F. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am. Chem. Soc. 2016, 138, 3478–3483.CrossRefGoogle Scholar
  26. [26]
    Hodson, H.; Li, X. T.; Batchelor-McAuley, C.; Shao, L. D.; Compton, R. G. Single nanotube voltammetry: Current fluctuations are due to physical motion of the nanotube. J. Phys. Chem. C 2016, 120, 6281–6286.CrossRefGoogle Scholar
  27. [27]
    Shimizu, K.; Tschulik, K.; Compton, R. G. Exploring the mineral–water interface: Reduction and reaction kinetics of single hematite (a-Fe2O3) nanoparticles. Chem. Sci. 2016, 7, 1408–1414.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Micro- & Nano-Electrochemistry and Centre for Electrochemical Sciences (CES)Ruhr-University BochumBochumGermany

Personalised recommendations