Nano Research

, Volume 10, Issue 10, pp 3468–3475 | Cite as

InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration

  • Jaakko Mastomäki
  • Stefano Roddaro
  • Mirko Rocci
  • Valentina Zannier
  • Daniele Ercolani
  • Lucia Sorba
  • Ilari J. Maasilta
  • Nadia Ligato
  • Antonio Fornieri
  • Elia Strambini
  • Francesco Giazotto
Research Article


We demonstrate an original method based on controlled oxidation for creating high-quality tunnel junctions between superconducting Al reservoirs and InAs semiconductor nanowires (NWs). We show clean tunnel characteristics with a current suppression by >4 orders of magnitude for a junction bias well below the Al gap of Δ 0 ≈ 200 μeV. The experimental data agree well with the Bardeen–Cooper–Schrieffer theoretical expectations for a superconducting tunnel junction. The studied devices employ small-scale tunnel contacts functioning as thermometers as well as larger electrodes that provide proof-of-principle active cooling of the electron distribution in the NWs. A peak refrigeration of approximately δT = 10 mK is achieved at a bath temperature of T bath ≈ 250–350 mK for our prototype devices. This method introduces important perspectives for the investigation of the thermoelectric effects in semiconductor nanostructures and for nanoscale refrigeration.


InAs nanowire superconducting tunnel junction thermometry nanorefrigeration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



S. R., V. Z., L. S., D. E., and M. R. acknowledge the financial support by CNR, through the bilateral projects with RFBR (Russia), and by Scuola Normale Superiore. The work of E. S. is funded by the Marie Curie Individual Fellowship MSCAIFEF-ST No. 660532-SuperMag. F. G, N. L., and A. F. acknowledge the financial support of the European Research Council under the European Union’s Seventh Framework Program (No. FP7/2007-2013)/ERC Grant agreement (No. 615187-COMANCHE) and MIURFIRB2013–Project Coca (No. RBFR1379UX). I. M. acknowledges funding by the Academy of Finland grant No. 298667.


  1. [1]
    Giazotto, F.; Martínez-Pérez, M. J. The Josephson heat interferometer. Nature 2013,492, 401–405.CrossRefGoogle Scholar
  2. [2]
    Altimiras, C.; Le Sueur, H.; Gennser, U.; Cavanna, A.; Mailly, D.; Pierre, F. Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime. Nat. Phys. 2010,6, 34–39.CrossRefGoogle Scholar
  3. [3]
    Muhonen, J. T.; Meschke, M.; Pekola, J. P. Micrometre-scale refrigerators. Rep. Prog. Phys. 2012, 75, 046501.CrossRefGoogle Scholar
  4. [4]
    Giazotto, F.; Heikkilä, T. T.; Luukanen, A.; Savin, A. M.; Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 2006, 78, 217–274.CrossRefGoogle Scholar
  5. [5]
    Fornieri, A.; Giazotto, F. Towards phase-coherent caloritronics in superconducting quantum circuits., arXiv:1610.01013, 2016.Google Scholar
  6. [6]
    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J.-P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.CrossRefGoogle Scholar
  7. [7]
    Wu, P. M.; Gooth, J.; Zianni, X.; Svensson, S. F.; Gluschke, J. G.; Dick, K. A.; Thelander, C.; Nielsch, K.; Linke, H. Large thermoelectric power factor enhancement observed in InAs nanowires. Nano Lett. 2013, 13, 4080–4086.CrossRefGoogle Scholar
  8. [8]
    Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970–3980.CrossRefGoogle Scholar
  9. [9]
    Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.CrossRefGoogle Scholar
  10. [10]
    Yazji, S.; Hoffman, E. A.; Ercolani, D.; Rossella, F.; Pitanti, A.; Cavalli, A.; Roddaro, S.; Abstreiter, G.; Sorba, L.; Zardo, I. Complete thermoelectric benchmarking of individual InSb nanowires using combined micro-Raman and electric transport analysis. Nano Res. 2015, 8, 4048–4060.CrossRefGoogle Scholar
  11. [11]
    Roddaro, S.; Ercolani, D.; Safeen, M. A.; Suomalainen, S.; Rossella, F.; Giazotto, F.; Sorba, L.; Beltram, F. Giant thermovoltage in single InAs nanowire field-effect transistors. Nano Lett. 2013, 13, 3638–3642.CrossRefGoogle Scholar
  12. [12]
    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S. Local noise in a diffusive conductor. Sci. Rep. 2016, 6, 30621.CrossRefGoogle Scholar
  13. [13]
    Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003–1007.CrossRefGoogle Scholar
  14. [14]
    Plissard, S. R.; van Weperen, I.; Car, D.; Verheijen, M. A.; Immink, G. W. G.; Kammhuber, J.; Cornelissen, L. J.; Szombati, D. B.; Geresdi, A.; Frolov, S. M. et al. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol. 2013, 8, 859–864.CrossRefGoogle Scholar
  15. [15]
    Chang, W.; Manucharyan, V. E.; Jespersen, T. S.; Nygård, J.; Marcus, C. M. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. Phys. Rev. Lett. 2013, 110, 217005.CrossRefGoogle Scholar
  16. [16]
    Larsen, T. W.; Petersson, K. D.; Kummeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M. Semiconductornanowire- based superconducting qubit. Phys. Rev. Lett. 2015, 115, 127001.CrossRefGoogle Scholar
  17. [17]
    Miller, N. A.; O’Neil, G. C.; Beall, J. A.; Hilton, G. C.; Irwin, K. D.; Schmidt, D. R.; Vale, R. L.; Ullom, J. N. High resolution X-ray transition-edge sensor cooled by tunnel junction refrigerators. Appl. Phys. Lett. 2008, 92, 163501.CrossRefGoogle Scholar
  18. [18]
    Giazotto, F.; Heikkilä, T. T.; Pepe, G. P.; Helistö, P.; Luukanen, A.; Pekola, J. P. Ultrasensitive proximity Josephson sensor with kinetic inductance readout. Appl. Phys. Lett. 2008, 92, 162507.CrossRefGoogle Scholar
  19. [19]
    Martínez-Pérez, M. J.; Giazotto, F. A quantum diffractor for thermal flux. Nat. Commun. 2014, 5, 3579.Google Scholar
  20. [20]
    Fornieri, A.; Blanc, C.; Bosisio, R.; D’Ambrosio, S.; Giazotto, F. Nanoscale phase engineering of thermal transport with a Josephson heat modulator. Nat. Nanotechnol. 2016, 11, 258–262.CrossRefGoogle Scholar
  21. [21]
    Martínez-Pérez, M. J.; Fornieri, A.; Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nat. Nanotechnol. 2015, 10, 303–307.CrossRefGoogle Scholar
  22. [22]
    Leijnse, M. Thermoelectric signatures of a Majorana bound state coupled to a quantum dot. New J. Phys. 2014, 16, 015029.CrossRefGoogle Scholar
  23. [23]
    López, R.; Lee, M.; Serra, L.; Lim, J. S. Thermoelectrical detection of Majorana states. Phys. Rev. B 2014, 89, 205418.CrossRefGoogle Scholar
  24. [24]
    Pekola, J. P.; Heikkilä, T. T.; Savin, A. M.; Flyktman, J. T., Giazotto, F.; Hekking, F. Hekking, F. W. J. Limitations in cooling electrons using normal-metal-superconductor tunnel junctions. Phys. Rev. Lett. 2004, 92, 056804.CrossRefGoogle Scholar
  25. [25]
    Quaranta, O.; Spathis, P.; Beltram, F.; Giazotto, F. Cooling electrons from 1 to 0.4 K with V-based nanorefrigerators. Appl. Phys. Lett. 2011, 98, 032501.CrossRefGoogle Scholar
  26. [26]
    Nevala, M. R.; Chaudhuri, S.; Halkosaari, J.; Karvonen, J. T.; Maasilta, I. J. Sub-micron normal-metal/insulator/superconductor tunnel junction thermometer and cooler using Nb. Appl. Phys. Lett. 2012, 101, 112601.CrossRefGoogle Scholar
  27. [27]
    Gunnarsson, D.; Richardson-Bullock, J. S.; Prest, M. J.; Nguyen, H. Q.; Timofeev, A. V.; Shah, V. A.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Myronov, M. et al. Interfacial engineering of semiconductor-superconductor junctions for high performance micro-coolers. Sci. Rep. 2015, 5, 17398.CrossRefGoogle Scholar
  28. [28]
    Svensson, S. F.; Hoffmann, E. A.; Nakpathomkun, N.; Wu, P. M.; Xu, H. Q.; Nilsson, H. A.; Sánchez, D.; Kashcheyevs, V.; Linke, H. Nonlinear thermovoltage and thermocurrent in quantum dots. New J. Phys. 2013, 15, 105011.CrossRefGoogle Scholar
  29. [29]
    Doh, Y.-J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272–275.CrossRefGoogle Scholar
  30. [30]
    Roddaro, S.; Pescaglini, A.; Ercolani, D.; Sorba, L.; Giazotto, F.; Beltram, F. Hot-electron effects in InAs nanowire Josephson junctions. Nano Res. 2011, 4, 259–265.CrossRefGoogle Scholar
  31. [31]
    Björk, M.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.CrossRefGoogle Scholar
  32. [32]
    Roddaro, S.; Pescaglini, A.; Ercolani, D.; Sorba, L.; Beltram, F. Manipulation of electron orbitals in hard-wall InAs/InP nanowire quantum dots. Nano Lett. 2011, 11, 1695–1699.CrossRefGoogle Scholar
  33. [33]
    Romeo, L.; Roddaro, S.; Pitanti, A.; Ercolani, D.; Sorba, L.; Beltram, F. Electrostatic spin control in InAs/InP nanowire quantum dots. Nano Lett. 2012, 12, 4490–4494.CrossRefGoogle Scholar
  34. [34]
    Rossella, F.; Bertoni, A.; Ercolani, D.; Rontani, M.; Sorba, L.; Beltram, F.; Roddaro, S. Nanoscale spin rectifiers controlled by the Stark effect. Nat. Nanotechnol. 2014, 9, 997–1001.CrossRefGoogle Scholar
  35. [35]
    Viti, L.; Vitiello, M. S.; Ercolani, D.; Sorba, L.; Tredicucci, A. Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors. Nanoscale Res. Lett. 2012, 7, 159.CrossRefGoogle Scholar
  36. [36]
    Suyatin, D. B.; Thelander, C.; Björk, M. T.; Maximov, I.; Samuelson, L. Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 2007, 18, 105307.CrossRefGoogle Scholar
  37. [37]
    Ruggiero, S. T.; Williams, A.; Rippard, W. H.; Clark, A.; Deiker, S. W.; Vale, L. R.; Ullom, J. N. Dilute Al-Mn alloys for low-temperature device applications. J. Low Temp. Phys. 2004, 134, 973–984.CrossRefGoogle Scholar
  38. [38]
    Tinkham, M. Introduction to Superconductivity; McGraw Hill: New York, 1996.Google Scholar
  39. [39]
    Dynes, R. C.; Narayanamurti, V.; Garno J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 1978, 41, 1509–1512.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jaakko Mastomäki
    • 1
    • 2
  • Stefano Roddaro
    • 1
  • Mirko Rocci
    • 1
  • Valentina Zannier
    • 1
  • Daniele Ercolani
    • 1
  • Lucia Sorba
    • 1
  • Ilari J. Maasilta
    • 2
  • Nadia Ligato
    • 1
  • Antonio Fornieri
    • 1
  • Elia Strambini
    • 1
  • Francesco Giazotto
    • 1
  1. 1.NESTScuola Normale Superiore and Istituto Nanoscienze-CNRPisaItaly
  2. 2.Nanoscience Center, Department of PhysicsUniversity of JyvaskylaJyväskyläFinland

Personalised recommendations