Skip to main content
Log in

Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Curved Cu nanowire (CCN)-based high-performance flexible transparent conductive electrodes (FTCEs) were fabricated via a fully solution-processed approach, involving synthesis, coating, patterning, welding, and transfer. Each step involved an innovative technique for completing the all-solution processes. The high-quality and well-dispersed CCNs were synthesized using a multi-polyol method through the synergistic effect of specific polyol reduction. To precisely control the optoelectrical properties of the FTCEs, the CCNs were uniformly coated on a polyimide (PI) substrate via a simple meniscus-dragging deposition method by tuning several coating parameters. We also employed a polyurethane (PU)-stamped patterning method to effectively produce 20 μm patterns on CCN thin films. The CCN thin films exhibited high electrical performance, which is attributed to the deeply percolated CCN network formed via a solvent-dipped welding method. Finally, the CCN thin films on the PI substrate were partially embedded and transferred to the PU matrix to reduce their surface roughness. Through consecutive processes involving the proposed methods, a highly percolated CCN thin film on the PU matrix exhibited high optoelectrical performance (R s = 53.48 Ω/□ at T = 85.71%), excellent mechanical properties (R/R 0 < 1.10 after the 10th repetition of tape peeling or 1,000 bending cycles), and a low root-mean-square surface roughness (R rms = 14.36 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670–6687.

    Article  Google Scholar 

  2. Zhong, Z. Y.; Woo, K.; Kim, I.; Hwang, H.; Kwon, S.; Choi, Y. M.; Lee, Y.; Lee, T. M.; Kim, K.; Moon, J. Rollto- roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation. Nanoscale 2016, 8, 8995–9003.

    Article  Google Scholar 

  3. Lee, J.; Lee, P.; Lee, H. B.; Hong, S. K.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D. J.; Ko, S. H. Roomtemperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23, 4171–4176.

    Article  Google Scholar 

  4. Mayousse, C.; Celle, C.; Carella, A.; Simonato, J.-P. Synthesis and purification of long copper nanowires. application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res. 2014, 7, 315–324.

    Article  Google Scholar 

  5. Li, S. J.; Chen, Y. Y.; Huang, L. J.; Pan, D. C. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg. Chem. 2014, 53, 4440–4444.

    Article  Google Scholar 

  6. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  7. Lee, J. H.; Shin, D. W.; Makotchenko, V. G.; Nazarov, A. S.; Fedorov, V. E.; Kim, Y. H.; Choi, J. Y.; Kim, J. M.; Yoo, J. B. One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 2009, 21, 4383–4387.

    Article  Google Scholar 

  8. Zhang, W.; Yin, Z. X.; Chun, A.; Yoo, J.; Kim, Y. S.; Piao, Y. Z. Bridging oriented copper nanowire-graphene composites for solution-processable, annealing-free, and air-stable flexible electrodes. ACS Appl. Mater. Interfaces 2016, 8, 1733–1741.

    Article  Google Scholar 

  9. Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137–3140.

    Article  Google Scholar 

  10. Pham, D. T.; Lee, T. H.; Luong, D. H.; Yao, F.; Ghosh, A.; Le, V. T.; Kim, T. H.; Li, B.; Chang, J.; Lee, Y. H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018–2027.

    Article  Google Scholar 

  11. Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithiumsulfur batteries. Adv. Funct. Mater. 2014, 24, 2772–2781.

    Article  Google Scholar 

  12. Kim, Y.; Ryu, T. I.; Ok, K.-H.; Kwak, M.-G.; Park, S.; Park, N.-G.; Han, C. J.; Kim, B. S.; Ko, M. J.; Son, H. J. et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4580–4589.

    Article  Google Scholar 

  13. Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S. S.; Yang, M.-Y. et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 2014, 26, 5808–5814.

    Article  Google Scholar 

  14. Im, H.-G.; Jung, S.-H.; Jin, J.; Lee, D.; Lee, J.; Lee, D.; Lee, J.-Y.; Kim, I.-D.; Bae, B.-S. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: A highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano 2014, 8, 10973–10979.

    Article  Google Scholar 

  15. Hu, W. L.; Wang, R. R.; Lu, Y. F.; Pei, Q. B. An elastomeric transparent composite electrode based on copper nanowires and polyurethane. J. Mater. Chem. C 2014, 2, 1298–1305.

    Article  Google Scholar 

  16. Nam, S.; Song, M.; Kim, D.-H.; Cho, B.; Lee, H. M.; Kwon, J.-D.; Park, S.-G.; Nam, K.-S.; Jeong, Y.; Kwon, S.-H. et al. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Sci. Rep. 2014, 4, 4788.

    Article  Google Scholar 

  17. Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798–4803.

    Article  Google Scholar 

  18. Chu, C. R.; Lee, C.; Koo, J.; Lee, H. M. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Res. 2016, 9, 2162–2173.

    Article  Google Scholar 

  19. Yin, Z. X.; Song, S. K.; You, D. J.; Ko, Y.; Cho, S.; Yoo, J.; Park, S. Y.; Piao, Y. Z.; Chang, S. T.; Kim, Y. S. Novel synthesis, coating, and networking of curved copper nanowires for flexible transparent conductive electrodes. Small 2015, 11, 4576–4583.

    Article  Google Scholar 

  20. Ding, S.; Jiu, J. T.; Gao, Y.; Tian, Y. H.; Araki, T.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, H. et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl. Mater. Interfaces 2016, 8, 6190–6199.

    Article  Google Scholar 

  21. Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  22. Yin, Z. X.; Lee, C.; Cho, S.; Yoo, J.; Piao, Y. Z.; Kim, Y. S. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes. Small 2014, 10, 5047–5052.

    Google Scholar 

  23. Guo, H. Z.; Chen, Y. Z.; Ping, H. M.; Jin, J. R.; Peng, D.-L. Facile synthesis of Cu and Cu@Cu–Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale 2013, 5, 2394–2402.

    Article  Google Scholar 

  24. Guo, H. Z.; Chen, Y. Z.; Cortie, M. B.; Liu, X.; Xie, Q. S.; Wang, X.; Peng, D.-L. Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 2014, 118, 9801–9808.

    Article  Google Scholar 

  25. Zhan, Y. J.; Lu, Y.; Peng, C.; Lou, J. Solvothermal synthesis and mechanical characterization of single crystalline copper nanorings. J. Cryst. Growth 2011, 325, 76–80.

    Article  Google Scholar 

  26. Zhou, L.; Fu, X.-F.; Yu, L.; Zhang, X.; Yu, X.-F.; Hao, Z.-H. Crystal structure and optical properties of silver nanorings. Appl. Phys. Lett. 2009, 94, 153102.

    Article  Google Scholar 

  27. Bhanushali, S.; Ghosh, P.; Ganesh, A.; Cheng, W. L. 1D copper nanostructures: Progress, challenges and opportunities. Small 2015, 11, 1232–1252.

    Article  Google Scholar 

  28. Rathmell, A. R.; Nguyen, M.; Chi, M. F.; Wiley, B. J. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett. 2012, 12, 3193–3199.

    Article  Google Scholar 

  29. Christensen, G.; Younes, H.; Hong, H. P.; Smith, P. Effects of solvent hydrogen bonding, viscosity, and polarity on the dispersion and alignment of nanofluids containing Fe2O3 nanoparticles. J. Appl. Phys. 2015, 118, 214302.

    Article  Google Scholar 

  30. Ko, Y.; Song, S. K.; Kim, N. H.; Chang, S. T. Highly transparent and stretchable conductors based on a directional arrangement of silver nanowires by a microliter-scale solution process. Langmuir 2016, 32, 366–373.

    Article  Google Scholar 

  31. Ko, Y. U.; Cho, S. R.; Choi, K. S.; Park, Y.; Kim, S. T.; Kim, N. H.; Kim, S. Y.; Chang, S. T. Microlitre scale solution processing for controlled, rapid fabrication of chemically derived graphene thin films. J. Mater. Chem. 2012, 22, 3606–3613.

    Article  Google Scholar 

  32. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  33. Kitano, T.; Maeda, Y.; Akasaka, T. Preparation of transparent and conductive thin films of carbon nanotubes using a spreading/coating technique. Carbon 2009, 47, 3559–3565.

    Article  Google Scholar 

  34. Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, J.; Kim, K.; Wang, H. L.; Sinclair, R.; Wong, H. S. P.; Bao, Z. Large-area assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors. Adv. Mater. 2015, 27, 2656–2662.

    Article  Google Scholar 

  35. Choi, D. Y.; Kang, H. W.; Sung, H. J.; Kim, S. S. Annealingfree, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5, 977–983.

    Article  Google Scholar 

  36. Jang, E. Y.; Kang, T. J.; Im, H. W.; Kim, D. W.; Kim, Y. H. Single-walled carbon-nanotube networks on large-area glass substrate by the dip-coating method. Small 2008, 4, 2255–2261.

    Article  Google Scholar 

  37. Duan, S. K.; Niu, Q. L.; Wei, J. F.; He, J. B.; Yin, Y. A.; Zhang, Y. Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes. Phys. Chem. Chem. Phys. 2015, 17, 8106–8112.

    Article  Google Scholar 

  38. Dai, H.; Ding, R. Q.; Li, M. C.; Huang, J.; Li, Y. F.; Trevor, M. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface. Sci. Rep. 2014, 4, 6742.

    Article  Google Scholar 

  39. Ko, Y. U.; Kim, N. H.; Lee, N. R.; Chang, S. T. Meniscusdragging deposition of single-walled carbon nanotubes for highly uniform, large-area, transparent conductors. Carbon 2014, 77, 964–972.

    Article  Google Scholar 

  40. Landau, L.; Levich, B. Dragging of a liquid by a moving plate. Acta Physicochim. URSS 1942, 17, 42–54.

    Google Scholar 

  41. White, D. A.; Tallmadge, J. A. Theory of drag out of liquids on flat plates. Chem. Eng. Sci. 1965, 20, 33–37.

    Article  Google Scholar 

  42. Wang, R. R.; Zhai, H. T.; Wang, T.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

    Article  Google Scholar 

  43. Lim, G.-H.; Lee, N.-E.; Lim, B. Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. J. Mater. Chem. C 2016, 4, 5642–5647.

    Article  Google Scholar 

  44. Lee, J.; Lee, I.; Kim, T.-S.; Lee, J.-Y. Efficient welding of silver nanowire networks without post-processing. Small 2013, 9, 2887–2894.

    Article  Google Scholar 

  45. Sachse, C.; Weiß, N.; Gaponik, N.; Müller-Meskamp, L.; Eychmüller, A.; Leo, K. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. 2014, 4, 1300737.

    Article  Google Scholar 

  46. Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. Annealing-free fabrication of highly oxidationresistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater. 2014, 6, e105.

    Article  Google Scholar 

  47. Yang, H. Y.; Park, H.-W.; Kim, S. J.; Hong, J.-M.; Kim, T. W.; Kim, D. H.; Lim, J. A. Intense pulsed light induced crystallization of a liquid-crystalline polymer semiconductor for efficient production of flexible thin-film transistors. Phys. Chem. Chem. Phys. 2016, 18, 4627–4634.

    Article  Google Scholar 

  48. Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J. Y.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.

    Article  Google Scholar 

  49. Tang, Y.; Gong, S.; Chen, Y.; Yap, L. W.; Cheng, W. L. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 2014, 8, 5707–5714.

    Article  Google Scholar 

  50. Rathmell, A. R.; Bergin, S. M.; Hua, Y.-L.; Li, Z.-Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 2010, 22, 3558–3563.

    Article  Google Scholar 

  51. Kim, U. J.; Lee, I. H.; Bae, J. J.; Lee, S.; Han, G. H.; Chae, S. J.; Güneş, F.; Choi, J. H.; Baik, C. W.; Kim, S. et al. Graphene/carbon nanotube hybrid-based transparent 2D optical Array. Adv. Mater. 2011, 23, 3809–3814.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP, Ministry of Science, ICT & Future Planning) (Nos. 2016R1A2B4012992, 2016R1C1B2013145 and 2016M3A7B4910458).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suk Tai Chang or Youn Sang Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Song, S.K., Cho, S. et al. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach. Nano Res. 10, 3077–3091 (2017). https://doi.org/10.1007/s12274-017-1523-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1523-5

Keywords

Navigation