Nano Research

, Volume 10, Issue 5, pp 1767–1783 | Cite as

Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading

  • Nan Mao
  • Huanlei Wang
  • Yang Sui
  • Yongpeng Cui
  • Jesse Pokrzywinski
  • Jing Shi
  • Wei Liu
  • Shougang Chen
  • Xin Wang
  • David Mitlin
Research Article


Achieving a satisfactory energy–power combination in a supercapacitor that is based on all-carbon electrodes and operates in benign aqueous media instead of conventional organic electrolytes is a major challenge. For this purpose, we fabricated carbon nanoflakes (20–100 nm in thickness, 5-μm in width) containing an unparalleled combination of a large surface area (3,000 m2·g−1 range) and mesoporosity (up to 72%). These huge-surface area functionalized carbons (HSAFCs) also had a substantial oxygen and nitrogen content (~10 wt.% combined), with a significant fraction of redox-active carboxyl/phenol groups in an optimized specimen. Their unique structure and chemistry resulted from a tailored single-step carbonization-activation approach employing (2-benzimidazolyl) acetonitrile combined with potassium hydroxide (KOH). The HSAFCs exhibited specific capacitances of 474 F·g−1 at 0.5 A·g−1 and 285 F·g−1 at 100 A·g−1 (charging time < 3 s) in an aqueous 2 M KOH solution. These values are among the highest reported, especially at high currents. When tested with a stable 1.8-V window in a 1 M Na2SO4 electrolyte, a symmetric supercapacitor device using the fabricated nanoflakes as electrodes yielded a normalized active mass of 24.4 Wh·kg−1 at 223 W·kg−1 and 7.3 Wh·kg−1 at 9,360 W·kg−1. The latter value corresponds to a charge time of <3 s. The cyclability of the devices was excellent, with 93% capacitance retention after 10,000 cycles. All the electrochemical results were achieved by employing electrodes with near-commercial mass loadings of 8 mg·cm−2.


energy storage high power activated carbon graphene doped carbon heteroatoms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are thankful to financial supports from the National Natural Science Foundation of China (Nos. 51402272 and 21471139), Shandong Province Outstanding Youth Scientist Foundation Plan (No. BS2014CL024), Seed Fund from Ocean University of China, and Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2017_1486_MOESM1_ESM.pdf (4.5 mb)
Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading


  1. [1]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  2. [2]
    Lei, Z. B.; Zhang, J. T.; Zhang, L. L.; Kumar, N. A.; Zhao, X. S. Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ. Sci. 2016, 9, 1891–1930.CrossRefGoogle Scholar
  3. [3]
    Zhao, Y.; Ding, Y.; Li, Y. T.; Peng, L. L.; Byon, H. R.; Goodenough, J. B.; Yu, G. H. A chemistry and material perspective on lithium redox flow batteries towards highdensity electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968–7996.CrossRefGoogle Scholar
  4. [4]
    Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.CrossRefGoogle Scholar
  5. [5]
    Candelaria, S. L.; Shao, Y. Y.; Zhou, W.; Li, X. L.; Xiao, J.; Zhang, J. G.; Wang, Y.; Liu, J.; Li, J. H.; Cao, G. Z. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195–220.CrossRefGoogle Scholar
  6. [6]
    Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.CrossRefGoogle Scholar
  7. [7]
    Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.CrossRefGoogle Scholar
  8. [8]
    Zhong, J.; Yang, Z. Y.; Mukherjee, R.; Thomas, A. V.; Zhu, K.; Sun, P. Z.; Lian, J.; Zhu, H. W.; Koratkar, N. Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy 2013, 2, 1025–1030.CrossRefGoogle Scholar
  9. [9]
    Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.CrossRefGoogle Scholar
  10. [10]
    Li, Z.; Xu, Z. W.; Wang, H. L.; Ding, J.; Zahiri, B.; Holt, C. M. B.; Tan, X. H.; Mitlin, D. Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 2014, 7, 1708–1718.CrossRefGoogle Scholar
  11. [11]
    Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 2013, 6, 1249–1259.CrossRefGoogle Scholar
  12. [12]
    Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X. L.; Nie, Z. M.; Gu, M.; Saraf, L. V.; Exarhos, G.; Zhang, J. G. et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett. 2013, 13, 3909–3914.CrossRefGoogle Scholar
  13. [13]
    Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 2012, 22, 827–834.CrossRefGoogle Scholar
  14. [14]
    Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.CrossRefGoogle Scholar
  15. [15]
    Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.CrossRefGoogle Scholar
  16. [16]
    Zheng, X. Y.; Luo, J. Y.; Lv, W.; Wang, D. W.; Yang, Q. H. Two-dimensional porous carbon: Synthesis and ion-transport properties. Adv. Mater. 2015, 27, 5388–5395.CrossRefGoogle Scholar
  17. [17]
    Yuan, K.; Xu, Y. Z.; Uihlein, J.; Brunklaus, G.; Shi, L.; Heiderhoff, R.; Que, M. M.; Forster, M.; Chassé, T.; Pichler, T. et al. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Adv. Mater. 2015, 27, 6714–6721.CrossRefGoogle Scholar
  18. [18]
    Wang, H. L.; Xu, Z. W.; Kohandehghan, A.; Li, Z.; Cui, K.; Tan, X. H.; Stephenson, T. J.; King' ondu, C. K.; Holt, C. M. B.; Olsen, B. C. et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 2013, 7, 5131–5141.CrossRefGoogle Scholar
  19. [19]
    Jordan, R. S.; Wang, Y.; McCurdy, R. D.; Yeung, M. T.; Marsh, K. L.; Khan, S. I.; Kaner, R. B.; Rubin, Y. Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor. Chem 2016, 1, 78–90.CrossRefGoogle Scholar
  20. [20]
    Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.Google Scholar
  21. [21]
    El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.CrossRefGoogle Scholar
  22. [22]
    Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.CrossRefGoogle Scholar
  23. [23]
    Qie, L.; Chen, W. M.; Xu, H. H.; Xiong, X. Q.; Jiang, Y.; Zou, F.; Hu, X. L.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2497–2504.CrossRefGoogle Scholar
  24. [24]
    Zhu, H.; Wang, X. L.; Liu, X. X.; Yang, X. R. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors. Adv. Mater. 2012, 24, 6524–6529.CrossRefGoogle Scholar
  25. [25]
    Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861–1872.CrossRefGoogle Scholar
  26. [26]
    Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175.CrossRefGoogle Scholar
  27. [27]
    Guo, Z. Y.; Xiao, Z.; Ren, G. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M.; Jiang, L. Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2016, 9, 1244–1255.CrossRefGoogle Scholar
  28. [28]
    Jiang, L. L.; Sheng, L. Z.; Chen, X.; Wei, T.; Fan, Z. J. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J. Mater. Chem. A 2016, 4, 11388–11396.CrossRefGoogle Scholar
  29. [29]
    Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.CrossRefGoogle Scholar
  30. [30]
    Xu, Z. X.; Zhuang, X. D.; Yang, C. Q.; Cao, J.; Yao, Z. Q.; Tang, Y. P.; Jiang, J. Z.; Wu, D. Q.; Feng, X. L. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981–1987.CrossRefGoogle Scholar
  31. [31]
    Chen, W.; Rakhi, R. B.; Hedhili, M. N.; Alshareef, H. N. Shape-controlled porous nanocarbons for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 5236–5243.CrossRefGoogle Scholar
  32. [32]
    Tang, J. L.; Etacheri, V.; Pol, V. G. From allergens to battery anodes: Nature-inspired, pollen derived carbon architectures for room- and elevated-temperature Li-ion storage. Sci. Rep. 2016, 6, 20290.CrossRefGoogle Scholar
  33. [33]
    Pol, V. G.; Shrestha, L. K.; Ariga, K. Tunable, functional carbon spheres derived from rapid synthesis of resorcinolformaldehyde resins. ACS Appl. Mater. Interfaces 2014, 6, 10649–10655.CrossRefGoogle Scholar
  34. [34]
    Xiang, F.; Zhong, J.; Gu, N. Y.; Mukherjee, R.; Oh, I. K.; Koratkar, N.; Yang, Z. Y. Far-infrared reduced graphene oxide as high performance electrodes for supercapacitors. Carbon 2014, 75, 201–208.CrossRefGoogle Scholar
  35. [35]
    Zhou, Y.; Candelaria, S. L.; Liu, Q.; Huang, Y. X.; Uchaker, E.; Cao, G. Z. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. J. Mater. Chem. A 2014, 2, 8472–8482.CrossRefGoogle Scholar
  36. [36]
    Long, C. L.; Qi, D. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 2014, 24, 3953–3961.CrossRefGoogle Scholar
  37. [37]
    Zhou, Y.; Candelari, S. L.; Liu, Q.; Uchaker, E.; Cao, G. Z. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy 2015, 12, 567–577.CrossRefGoogle Scholar
  38. [38]
    Lin, R. Y.; Taberna, P. L.; Fantini, S.; Presser, V.; Pérez, C. R.; Malbosc, F.; Rupesinghe, N. L.; Teo, K. B. K.; Gogotsi, Y.; Simon, P. Capacitive energy storage from–50 to 100 °C using an ionic liquid electrolyte. J. Phys. Chem. Lett. 2011, 2, 2396–2401.CrossRefGoogle Scholar
  39. [39]
    Ahmed, B.; Xia, C.; Alshareef, H. N. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today 2016, 11, 250–271.CrossRefGoogle Scholar
  40. [40]
    Wang, H. L.; Gao, Q. M.; Hu, J. High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 2009, 131, 7016–7022.CrossRefGoogle Scholar
  41. [41]
    Zheng, X. Y.; Lv, W.; Tao, Y.; Shao, J. J.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Wang, D. W.; Yang, Q. H. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem. Mater. 2014, 26, 6896–6903.CrossRefGoogle Scholar
  42. [42]
    Sun, L.; Tian, C. G.; Li, M. T.; Meng, X. Y.; Wang, L.; Wang, R. H.; Yin, J.; Fu, H. G. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470.CrossRefGoogle Scholar
  43. [43]
    Wang, H. L.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J. Mater. Chem. A 2016, 4, 5149–5158.CrossRefGoogle Scholar
  44. [44]
    Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.CrossRefGoogle Scholar
  45. [45]
    Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.CrossRefGoogle Scholar
  46. [46]
    Lotfabad, E. M.; Kalisvaart, P.; Kohandehghan, A.; Karpuzov, D.; Mitlin, D. Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A 2014, 2, 19685–19695.CrossRefGoogle Scholar
  47. [47]
    Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.CrossRefGoogle Scholar
  48. [48]
    Qian, W. J.; Zhu, J. Y.; Zhang, Y.; Wu, X.; Yan, F. Condiment-derived 3D architecture porous carbon for electrochemical supercapacitors. Small 2015, 11, 4959–4969.CrossRefGoogle Scholar
  49. [49]
    Long, C. L.; Jiang, L. L.; Wu, X. L.; Jiang, Y. T.; Yang, D. R.; Wang, C. K.; Wei, T.; Fan, Z. J. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 2015, 93, 412–420.CrossRefGoogle Scholar
  50. [50]
    Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.CrossRefGoogle Scholar
  51. [51]
    Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447.CrossRefGoogle Scholar
  52. [52]
    Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878.CrossRefGoogle Scholar
  53. [53]
    Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X. H.; Xu, Z. W.; Wang, H. L.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy. Mater. 2012, 2, 431–437.CrossRefGoogle Scholar
  54. [54]
    Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z. H.; Lu, G. Q. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 2009, 19, 1800–1809.CrossRefGoogle Scholar
  55. [55]
    Oh, Y. J.; Yoo, J. J.; Kim, Y. I.; Yoon, J. K.; Yoon, H. N.; Kim, J. H.; Park, S. B. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 2014, 116, 118–128.CrossRefGoogle Scholar
  56. [56]
    Bichat, M. P.; Raymundo-Piñ ero, E.; Bé guin, F. High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 2010, 48, 4351–4361.CrossRefGoogle Scholar
  57. [57]
    Gao, Q.; Demarconnay, L.; Raymundo-Piñ ero, E.; Bé guin, F. Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 2012, 5, 9611–9617.CrossRefGoogle Scholar
  58. [58]
    Wang, H. L.; Li, Z.; Tak, J. K.; Holt, C. M. B.; Tan, X. H.; Xu, Z. W.; Amirkhiz, B. S.; Hayfield, D.; Anyia, A.; Stephenson, T. et al. Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 2013, 57, 317–328.CrossRefGoogle Scholar
  59. [59]
    Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon. J. Phys. Chem. C 2008, 112, 9950–9955.CrossRefGoogle Scholar
  60. [60]
    Tian, W. Q.; Gao, Q. M.; Tan, Y. L.; Yang, K.; Zhu, L. H.; Yang, C. X.; Zhang, H. Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 5656–5664.CrossRefGoogle Scholar
  61. [61]
    Chen, C.; Xu, G. B.; Wei, X. L.; Yang, L. W. A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors. J. Mater. Chem. A 2016, 4, 9900–9909.CrossRefGoogle Scholar
  62. [62]
    Zhang, Y. Q.; Liu, X.; Wang, S. L.; Dou, S. X.; Li, L. Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J. Mater. Chem. A 2016, 4, 10869–10877.CrossRefGoogle Scholar
  63. [63]
    Zhang, Y.; Tao, B. L.; Xing, W.; Zhang, L.; Xue, Q. Z.; Yan, Z. F. Sandwich-like nitrogen-doped porous carbon/ graphene nanoflakes with high-rate capacitive performance. Nanoscale 2016, 8, 7889–7898.CrossRefGoogle Scholar
  64. [64]
    Zhang, X. M.; Jiao, Y. Q.; Sun, L.; Wang, L.; Wu, A. P.; Yan, H. J.; Meng, M. C.; Tian, C. G.; Jiang, B. J.; Fu, H. G. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale 2016, 8, 2418–2427.CrossRefGoogle Scholar
  65. [65]
    Song, S. J.; Ma, F. W.; Wu, G.; Ma, D.; Geng, W. D.; Wan, J. F. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 2015, 3, 18154–18162.CrossRefGoogle Scholar
  66. [66]
    Ma, F. W.; Ma, D.; Wu, G.; Geng, W. D.; Shao, J. Q.; Song, S. J.; Wan, J. F.; Qiu, J. S. Construction of 3D nanostructure hierarchical porous graphitic carbons by chargeinduced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem. Commun. 2016, 52, 6673–6676.CrossRefGoogle Scholar
  67. [67]
    Cheng, P.; Gao, S. Y.; Zang, P. Y.; Yang, X. F.; Bai, Y. L.; Xu, H.; Liu, Z. H.; Lei, Z. B. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 2015, 93, 315–324.CrossRefGoogle Scholar
  68. [68]
    Xu, J.; Tan, Z. Q.; Zeng, W. C.; Chen, G. X.; Wu, S. L.; Zhao, Y.; Ni, K.; Tao, Z. C.; Ikram, M.; Ji, H. X. et al. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 2016, 28, 5222–5228.CrossRefGoogle Scholar
  69. [69]
    Zhu, S.; Li, J. J.; Ma, L. Y.; Guo, L. C.; Li, Q. Y.; He, C. N.; Liu, E. Z.; He, F.; She, C. S.; Zhao, N. Q. Three-dimensional network of N-doped carbon ultrathin nanosheets with closely packed mesopores: Controllable synthesis and application in electrochemical energy storage. ACS Appl. Mater. Interfaces 2016, 8, 11720–11728.CrossRefGoogle Scholar
  70. [70]
    Cheng, P.; Li, T.; Yu, H.; Zhi, L.; Liu, Z. H.; Lei, Z. B. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J. Phys. Chem. C 2016, 120, 2079–2086.CrossRefGoogle Scholar
  71. [71]
    Liu, X. R.; Zheng, M. T.; Xiao, Y.; Yang, Y. H.; Yang, L. F.; Liu, Y. L.; Lei, B. F.; Dong, H. W.; Zhang, H. R.; Fu, H. G. Microtube bundle carbon derived from paulownia sawdust for hybrid supercapacitor electrodes. ACS Appl. Mater. Interfaces 2013, 5, 4667–4677.CrossRefGoogle Scholar
  72. [72]
    Li, M. J.; Liu, C. M.; Cao, H. B.; Zhao, H.; Zhang, Y.; Fan, Z. J. KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 14844–14851.Google Scholar
  73. [73]
    Hao, P.; Zhao, Z. H.; Leng, Y. H.; Tian, J.; Sang, Y. H.; Boughton, R. I.; Wong, C. P.; Liu, H.; Yang, B. Graphenebased nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 2015, 15, 9–23.CrossRefGoogle Scholar
  74. [74]
    Huang, Y. X.; Peng, L. L.; Liu, Y.; Zhao, G. J.; Chen, J. Y.; Yu, G. H. Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 15205–15215.CrossRefGoogle Scholar
  75. [75]
    Sun, F.; Wu, H. B.; Liu, X.; Liu, F.; Zhou, H. H.; Gao, J. H.; Lu, Y. F. Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Res. 2016, 9, 3209–3221.CrossRefGoogle Scholar
  76. [76]
    Zhang, F.; Liu, T. Y.; Hou, G. H.; Kou, T. Y.; Yue, L.; Guan, R. F.; Li, Y. Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 2016, 9, 2875–2888.CrossRefGoogle Scholar
  77. [77]
    Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.CrossRefGoogle Scholar
  78. [78]
    Ding, Y.; Yu, G. H. A bio-inspired, heavy-metal-free, dualelectrolyte liquid battery towards sustainable energy storage. Angew. Chem., Int. Ed. 2016, 55, 4772–4776.Google Scholar
  79. [79]
    Subramanian, V.; Luo, C.; Stephan, A. M.; Nahm, K. S.; Thomas, S.; Wei, B. Q. Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 2007, 111, 7527–7531.CrossRefGoogle Scholar
  80. [80]
    Bello, A.; Manyala, N.; Barzegar, F.; Khaleed, A. A.; Momodu, D. Y.; Dangbegnon, J. K. Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv. 2016, 6, 1800–1809.CrossRefGoogle Scholar
  81. [81]
    Wang, S. G.; Ren, Z. H.; Li, J. P.; Ren, Y. Q.; Zhao, L.; Yu, J. Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application. RSC Adv. 2014, 4, 31300–31307.CrossRefGoogle Scholar
  82. [82]
    Li, J. P.; Ren, Z. H.; Ren, Y. Q.; Zhao, L.; Wang, S. G.; Yu, J. Activated carbon with micrometer-scale channels prepared from luffa sponge fibers and their application for supercapacitors. RSC Adv. 2014, 4, 35789–35796.CrossRefGoogle Scholar
  83. [83]
    Fic, K.; Lota, G.; Meller, M.; Frackowiak, E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 2012, 5, 5842–5850.CrossRefGoogle Scholar
  84. [84]
    Jin, H. Y.; Peng, Z. H.; Tang, W. M.; Chan, H. L. W. Controllable functionalized carbon fabric for highperformance all-carbon-based supercapacitors. RSC Adv. 2014, 4, 33022–33028.CrossRefGoogle Scholar
  85. [85]
    Yuan, S. J.; Dai, X. H. Heteroatom-doped porous carbon derived from “all-in-one” precursor sewage sludge for electrochemical energy storage. RSC Adv. 2015, 5, 45827–45835.CrossRefGoogle Scholar
  86. [86]
    Wang, L. Q.; Wang, J. Z.; Jia, F.; Wang, C. Y.; Chen, M. M. Nanoporous carbon synthesised with coal tar pitch and its capacitive performance. J. Mater. Chem. A 2013, 1, 9498–9507.CrossRefGoogle Scholar
  87. [87]
    Lee, J. S. M.; Wu, T. H.; Alston, B. M.; Briggs, M. E.; Hasell, T.; Hu, C. C.; Cooper, A. I. Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. J. Mater. Chem. A 2016, 4, 7665–7673.CrossRefGoogle Scholar
  88. [88]
    Lang, J. W.; Yan, X. B.; Liu, W. W.; Wang, R. T.; Xue, Q. J. Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J. Power Sources 2012, 204, 220–229.CrossRefGoogle Scholar
  89. [89]
    Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. A symmetric supercapacitors based on graphene/ MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.CrossRefGoogle Scholar
  90. [90]
    Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 2006, 153, 183–190.CrossRefGoogle Scholar
  91. [91]
    Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nan Mao
    • 1
  • Huanlei Wang
    • 1
  • Yang Sui
    • 1
  • Yongpeng Cui
    • 1
  • Jesse Pokrzywinski
    • 2
  • Jing Shi
    • 1
  • Wei Liu
    • 1
  • Shougang Chen
    • 1
  • Xin Wang
    • 1
  • David Mitlin
    • 2
  1. 1.Institute of Materials Science and EngineeringOcean University of ChinaQingdaoChina
  2. 2.Chemical & Biomolecular Engineering and Mechanical EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations