Nano Research

, Volume 10, Issue 4, pp 1366–1376 | Cite as

Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles

  • Chuanqi Peng
  • Xiaofei Gao
  • Jing Xu
  • Bujie Du
  • Xuhui Ning
  • Shaoheng Tang
  • Robert M. Bachoo
  • Mengxiao Yu
  • Woo-Ping Ge
  • Jie Zheng
Research Article


A major clinical translational challenge in nanomedicine is the potential of toxicity associated with the uptake and long-term retention of non-degradable nanoparticles (NPs) in major organs. The development of inorganic NPs that undergo renal clearance could potentially resolve this significant biosafety concern. However, it remains unclear whether inorganic NPs that can be excreted by the kidneys remain capable of targeting tumors with poor permeability. Glioblastoma multiforme, the most malignant orthotopic brain tumor, presents a unique challenge for NP delivery because of the blood-brain barrier and robust blood-tumor barrier of reactive microglia and macroglia in the tumor microenvironment. Herein, we used an orthotopic murine glioma model to investigate the passive targeting of glutathione-coated gold nanoparticles (AuNPs) of 3 nm in diameter that undergo renal clearance and 18-nm AuNPs that fail to undergo renal clearance. Remarkably, we report that 3-nm AuNPs were able to target intracranial tumor tissues with higher efficiency (2.3× relative to surrounding non-tumor normal brain tissues) and greater specificity (3.0×) than did the larger AuNPs. Pharmacokinetics studies suggested that the higher glioma targeting ability of the 3-nm AuNPs may be attributed to the longer retention time in circulation. The total accumulation of the 3-nm AuNPs in major organs was significantly less (8.4×) than that of the 18-nm AuNPs. Microscopic imaging of blood vessels and renal-clearable AuNPs showed extravasation of NPs from the leaky blood-tumor barrier into the tumor interstitium. Taken together, our results suggest that the 3-nm AuNPs, characterized by enhanced permeability and retention, are able to target brain tumors and undergo renal clearance.


enhanced permeability and retention brain tumor passive targeting gold nanoparticles renal clearance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was partially supported by CPRIT (Nos. RP140544 and RP160866), NIH (No. 1R01DK103363) and a start-up fund from the University of Texas at Dallas to J. Z., UTSW CRI start-up funds, UTSW High Impact/High Risk Grant and NINDS K99/R00 (No. R00NS073735) to W. P. G.

Supplementary material

12274_2017_1472_MOESM1_ESM.pdf (731 kb)
Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles


  1. [1]
    Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.Google Scholar
  2. [2]
    Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417.CrossRefGoogle Scholar
  3. [3]
    Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822.CrossRefGoogle Scholar
  4. [4]
    Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.CrossRefGoogle Scholar
  5. [5]
    Goldmann, E. The growth of malignant disease in man and the lower animals: With special reference to the vascular system. Lancet 1907, 170, 1236–1240.CrossRefGoogle Scholar
  6. [6]
    Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971, 285, 1182–1186.CrossRefGoogle Scholar
  7. [7]
    Dvorak, H. F.; Brown, L. F.; Detmar, M.; Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 1995, 146, 1029–1039.Google Scholar
  8. [8]
    Carmeliet, P.; Jain, R. K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257.CrossRefGoogle Scholar
  9. [9]
    Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.CrossRefGoogle Scholar
  10. [10]
    Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 1998, 95, 4607–4612.CrossRefGoogle Scholar
  11. [11]
    Groothuis, D. R. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro Oncol. 2000, 2, 45–59.Google Scholar
  12. [12]
    Pardridge, W. M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRX 2005, 2, 3–14.CrossRefGoogle Scholar
  13. [13]
    Béduneau, A.; Saulnier, P.; Benoit, J.-P. Active targeting of brain tumors using nanocarriers. Biomaterials 2007, 28, 4947–4967.CrossRefGoogle Scholar
  14. [14]
    Yan, H.; Wang, L.; Wang, J.; Weng, X.; Lei, H.; Wang, X.; Jiang, L.; Zhu, J.; Lu, W.; Wei, X. et al. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano 2012, 6, 410–420.CrossRefGoogle Scholar
  15. [15]
    Cole, A. J.; David, A. E.; Wang, J. X.; Galbán, C. J.; Yang, V. C. Magnetic brain tumor targeting and biodistribution of long-circulating peg-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials 2011, 32, 6291–6301.CrossRefGoogle Scholar
  16. [16]
    Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.CrossRefGoogle Scholar
  17. [17]
    Chauhan, R. P.; Mathur, R.; Singh, G.; Bag, N.; Singh, S.; Chuttani, K.; Kumar, B. S. H.; Agrawal, S. K.; Mishra, A. K. Evaluation of biotinylated magnetic nanoparticles for tumour imaging. J. Mater. Sci. 2013, 48, 3913–3925.CrossRefGoogle Scholar
  18. [18]
    Yang, X. Q.; Hong, H.; Grailer, J. J.; Rowland, I. J.; Javadi, A.; Hurley, S. A.; Xiao, Y. L.; Yang, Y.; Zhang, Y.; Nickles, R. J. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011, 32, 4151–4160.CrossRefGoogle Scholar
  19. [19]
    Meyers, J. D.; Cheng, Y.; Broome, A. M.; Agnes, R. S.; Schluchter, M. D.; Margevicius, S.; Wang, X. N.; Kenney, M. E.; Burda, C.; Basilion, J. P. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact. 2015, 32, 448–457.CrossRefGoogle Scholar
  20. [20]
    Hu, H.; Huang, P.; Weiss, O. J.; Yan, X. F.; Yue, X. Y.; Zhang, M. G.; Tang, Y. X.; Nie, L. M.; Ma, Y.; Niu, G. PET and NIR optical imaging using self-illuminating 64Cudoped chelator-free gold nanoclusters. Biomaterials 2014, 35, 9868–9876.CrossRefGoogle Scholar
  21. [21]
    Goel, S.; Chen, F.; Hong, H.; Valdovinos, H. F.; Hernandez, R.; Shi, S. X.; Barnhart, T. E.; Cai, W. B. VEGF121-conjugated mesoporous silica nanoparticle: A tumor targeted drug delivery system. ACS Appl. Mater. Interfaces 2014, 6, 21677–21685.Google Scholar
  22. [22]
    Chakravarty, R.; Goel, S.; Hong, H.; Chen, F.; Valdovinos, H. F.; Hernandez, R.; Barnhart, T. E.; Cai, W. B. Hollow mesoporous silica nanoparticles for tumor vasculature targeting and pet image-guided drug delivery. Nanomedicine 2015, 10, 1233–1246.CrossRefGoogle Scholar
  23. [23]
    Chen, K.; Li, Z.-B.; Wang, H.; Cai, W. B.; Chen, X. Y. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 2235–2244.CrossRefGoogle Scholar
  24. [24]
    Cai, W. B.; Chen, K.; Li, Z.-B.; Gambhir, S. S.; Chen, X. Y. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 2007, 48, 1862–1870.CrossRefGoogle Scholar
  25. [25]
    Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. 2012, 124, 9956–9959.CrossRefGoogle Scholar
  26. [26]
    Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.CrossRefGoogle Scholar
  27. [27]
    Gao, J.; Chen, K.; Luong, R.; Bouley, D. M.; Mao, H.; Qiao, T.; Gambhir, S. S.; Cheng, Z. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett. 2011, 12, 281–286.Google Scholar
  28. [28]
    Wang, Y. C.; Liu, Y. J.; Luehmann, H.; Xia, X. H.; Wan, D. H.; Cutler, C.; Xia, Y. N. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett. 2013, 13, 581–585.CrossRefGoogle Scholar
  29. [29]
    Son, Y. J.; Jang, J.-S.; Cho, Y. W.; Chung, H.; Park, R.-W.; Kwon, I. C.; Kim, I.-S.; Park, J. Y.; Seo, S. B.; Park, C. R. et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J. Control. Release 2003, 91, 135–145.CrossRefGoogle Scholar
  30. [30]
    Noguchi, Y.; Wu, J.; Duncan, R.; Strohalm, J.; Ulbrich, K.; Akaike, T.; Maeda, H. Early phase tumor accumulation of macromolecules: A great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res. 1998, 89, 307–314.CrossRefGoogle Scholar
  31. [31]
    Yu, M. X.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674.CrossRefGoogle Scholar
  32. [32]
    Storm, G.; Belliot, S. O.; Daemen, T.; Lasic, D. D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Del. Rev. 1995, 17, 31–48.CrossRefGoogle Scholar
  33. [33]
    Gibaud, S.; Demoy, M.; Andreux, J. P.; Weingarten, C.; Gouritin, B.; Couvreur, P. Cells involved in the capture of nanoparticles in hematopoietic organs. J. Pharm. Sci. 1996, 85, 944–950.CrossRefGoogle Scholar
  34. [34]
    Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 2002, 54, 631–651.CrossRefGoogle Scholar
  35. [35]
    De Jong, W. H.; Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008, 3, 133–149.CrossRefGoogle Scholar
  36. [36]
    Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning, X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981.CrossRefGoogle Scholar
  37. [37]
    Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 12572–12576.CrossRefGoogle Scholar
  38. [38]
    Black, K. L.; Ningaraj, N. S. Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 2004, 11, 165–173.Google Scholar
  39. [39]
    Zheng, J.; Ding, Y.; Tian, B. Z.; Wang, Z. L.; Zhuang, X. W. Luminescent and raman active silver nanoparticles with polycrystalline structure. J. Am. Chem. Soc. 2008, 130, 10472–10473.CrossRefGoogle Scholar
  40. [40]
    Mashimo, T.; Pichumani, K.; Vemireddy, V.; Hatanpaa, K. J.; Singh, D. K.; Sirasanagandla, S.; Nannepaga, S.; Piccirillo, S. G.; Kovacs, Z.; Foong, C. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014, 159, 1603–1614.CrossRefGoogle Scholar
  41. [41]
    Zhou, C.; Long, M.; Qin, Y. P.; Sun, X. K.; Zheng, J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem., Int. Ed. 2011, 50, 3168–3172.CrossRefGoogle Scholar
  42. [42]
    Tang, S. H.; Peng, C. Q.; Xu, J.; Du, B. J.; Wang, Q. X.; Vinluan, R. D.; Yu, M. X.; Kim, M. J.; Zheng, J. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew. Chem., Int. Ed. 2016, 55, 16039–16043.CrossRefGoogle Scholar
  43. [43]
    Zhou, C.; Hao, G. Y.; Thomas, P.; Liu, J. B.; Yu, M. X.; Sun, S. S.; Öz, O. K.; Sun, X. K.; Zheng, J. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. 2012, 124, 10265–10269.CrossRefGoogle Scholar
  44. [44]
    Zhu, Y.; Parada, L. F. The molecular and genetic basis of neurological tumours. Nat. Rev. Cancer 2002, 2, 616–626.CrossRefGoogle Scholar
  45. [45]
    Van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M. C.; Wesseling, P.; Wurdinger, T.; de Vries, H. E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015, 19, 1–12.CrossRefGoogle Scholar
  46. [46]
    Leten, C.; Struys, T.; Dresselaers, T.; Himmelreich, U. In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models. J. Neurooncol. 2014, 119, 297–306.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chuanqi Peng
    • 1
  • Xiaofei Gao
    • 2
  • Jing Xu
    • 1
  • Bujie Du
    • 1
  • Xuhui Ning
    • 1
  • Shaoheng Tang
    • 1
  • Robert M. Bachoo
    • 3
  • Mengxiao Yu
    • 1
  • Woo-Ping Ge
    • 2
  • Jie Zheng
    • 1
  1. 1.Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonUSA
  2. 2.Children’s Research Institute, Department of Pediatrics, Department of Neuroscience, Harold C. Simmons Comprehensive Cancer CenterUT Southwestern Medical CenterDallasUSA
  3. 3.Simmons Cancer Center, Annette G. Strauss Center for Neuro-Oncology, Department of Internal Medicine, Department of Neurology and NeurotherapeuticsUT Southwestern Medical CenterDallasUSA

Personalised recommendations