Nano Research

, Volume 10, Issue 8, pp 2683–2691 | Cite as

Flexible electronic eardrum

  • Yang Gu
  • Xuewen Wang
  • Wen Gu
  • Yongjin Wu
  • Tie Li
  • Ting Zhang
Research Article

Abstract

Flexible mechanosensors with a high sensitivity and fast response speed may advance the wearable and implantable applications of healthcare devices, such as real-time heart rate, pulse, and respiration monitoring. In this paper, we introduce a novel flexible electronic eardrum (EE) based on single-walled carbon nanotubes, poly-ethylene, and poly-dimethylsiloxane with micro-structured pyramid arrays. The EE device shows a high sensitivity, high signal-to-noise ratio (approximately 55 dB), and fast response time (76.9 μs) in detecting and recording sound within a frequency domain of 20–13,000 Hz. The mechanism for sound detection is investigated and the sensitivity is determined using the micro-structure, thickness, and strain state. We also demonstrated that the device is able to distinguish human voices. This unprecedented performance of the flexible electronic eardrum has implications for many applications such as implantable acoustical bioelectronics and personal voice recognition.

Keywords

electronic eardrum (EE) pressure sensor carbon nanotube voice recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1470_MOESM1_ESM.pdf (2.3 mb)
Flexible electronic eardrum
12274_2017_1470_MOESM2_ESM.wav (1.3 mb)
Supplementary material, approximately 1.31 MB.
12274_2017_1470_MOESM3_ESM.wav (1.6 mb)
Supplementary material, approximately 1.62 MB.

References

  1. [1]
    Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.Google Scholar
  2. [2]
    Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.CrossRefGoogle Scholar
  3. [3]
    Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.CrossRefGoogle Scholar
  4. [4]
    Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.CrossRefGoogle Scholar
  5. [5]
    Turner, A. P. F.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Micro. 2004, 2, 161–166.CrossRefGoogle Scholar
  6. [6]
    Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15.CrossRefGoogle Scholar
  7. [7]
    Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725.CrossRefGoogle Scholar
  8. [8]
    Henning, A.; Swaminathan, N.; Godkin, A.; Shalev, G.; Amit, I.; Rosenwaks, Y. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing. Nano Res. 2015, 8, 2206–2215.CrossRefGoogle Scholar
  9. [9]
    Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.CrossRefGoogle Scholar
  10. [10]
    Dagdeviren, C.; Su, Y. W.; Joe, P.; Yona, R.; Liu, Y. H.; Kim, Y. S.; Huang, Y. A.; Damadoran, A. R.; Xia, J.; Martin, L. W. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496.CrossRefGoogle Scholar
  11. [11]
    Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, e1500661.CrossRefGoogle Scholar
  12. [12]
    Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325.CrossRefGoogle Scholar
  13. [13]
    Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressuresensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.CrossRefGoogle Scholar
  14. [14]
    Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G.; Zhu, M. F. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 2014, 26, 5018–5024.CrossRefGoogle Scholar
  15. [15]
    Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.CrossRefGoogle Scholar
  16. [16]
    Yi, L. Z.; Jiao, W. H.; Zhu, C. M.; Wu, K.; Zhang, C.; Qian, L. H.; Wang, S.; Jiang, Y. T.; Yuan, S. L. Ultrasensitive strain gauge with tunable temperature coefficient of resistivity. Nano Res. 2016, 9, 1346–1357.CrossRefGoogle Scholar
  17. [17]
    Yi, L. Z.; Jiao, W. H.; Wu, K.; Qian, L. H.; Yu, X. X.; Xia, Q.; Mao, K. M.; Yuan, S. L.; Wang, S.; Jiang, Y. T. Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection. Nano Res. 2015, 8, 2978–2987.CrossRefGoogle Scholar
  18. [18]
    Wang, Y.; Yang, T. T.; Lao, J. C.; Zhang, R. J.; Zhang, Y. Y.; Zhu, M.; Li, X.; Zang, X. B.; Wang, K. L.; Yu, W. J. et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res. 2015, 8, 1627–1636.CrossRefGoogle Scholar
  19. [19]
    Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.CrossRefGoogle Scholar
  20. [20]
    Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H. et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 2014, 26, 7324–7332.CrossRefGoogle Scholar
  21. [21]
    Zang, Y. P.; Zhang, F. J.; Huang, D. Z.; Gao, X. K.; Di, C. A.; Zhu, D. B. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 2015, 6, 6269.CrossRefGoogle Scholar
  22. [22]
    Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.CrossRefGoogle Scholar
  23. [23]
    Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.CrossRefGoogle Scholar
  24. [24]
    Park, H.; Jeong, Y. R.; Yun, J.; Hong, S. Y.; Jin, S.; Lee, S. J.; Zi, G.; Ha, J. S. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 2015, 9, 9974–9985.CrossRefGoogle Scholar
  25. [25]
    Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.CrossRefGoogle Scholar
  26. [26]
    Zhu, B. W.; Niu, Z. Q.; Wang, H.; Leow, W. R.; Wang, H.; Li, Y. G.; Zheng, L. Y.; Wei, J.; Huo, F. W.; Chen, X. D. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625–3631.CrossRefGoogle Scholar
  27. [27]
    Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.CrossRefGoogle Scholar
  28. [28]
    Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.CrossRefGoogle Scholar
  29. [29]
    Preston, C.; Song, D.; Dai, J. Q.; Tsinas, Z.; Bavier, J.; Cumings, J.; Ballarotto, V.; Hu, L. B. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Res. 2015, 8, 2242–2250.CrossRefGoogle Scholar
  30. [30]
    Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017.CrossRefGoogle Scholar
  31. [31]
    Tee, B. C. K.; Chortos, A.; Dunn, R. R.; Schwartz, G.; Eason, E.; Bao, Z. A. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434.CrossRefGoogle Scholar
  32. [32]
    Miao, J. M.; Lin, R. M.; Chen, L. Q.; Zou, Q. B.; Lim, S. Y.; Seah, S. H. Design considerations in micromachined silicon microphones. Microelectron. J. 2002, 33, 21–28.CrossRefGoogle Scholar
  33. [33]
    Boersma, P.; Weenink, D. PRAAT: Doing phonetics by computer. www.praat.org (accessed Oct 2, 2016).Google Scholar
  34. [34]
    Cartei, V.; Reby, D. Acting gay: Male actors shift the frequency components of their voices towards female values when playing homosexual characters. J. Nonverbal Behav. 2012, 36, 79–93.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yang Gu
    • 1
  • Xuewen Wang
    • 1
  • Wen Gu
    • 1
  • Yongjin Wu
    • 1
  • Tie Li
    • 1
  • Ting Zhang
    • 1
  1. 1.Suzhou Institute of Nano-Tech and Nano-BionicsSuzhouChina

Personalised recommendations