Nano Research

, Volume 10, Issue 7, pp 2519–2526 | Cite as

Deriving phosphorus atomic chains from few-layer black phosphorus

Research Article
  • 245 Downloads

Abstract

Phosphorus atomic chains, the narrowest nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP-based one-dimensional (1D) nano-electronics components. In this study, we report a top-down route for the preparation of phosphorus atomic chains via electron beam sculpturing inside a transmission electron microscope (TEM). The growth and dynamics (i.e., rupture and edge migration) of 1D phosphorus chains are experimentally captured for the first time. Furthermore, the dynamic behavior and associated energetics of the as-formed phosphorus chains are further investigated by density functional theory (DFT) calculations. It is hoped that these 1D BP structures will serve as a novel platform and inspire further exploration of the versatile properties of BP.

Keywords

black phosphorus one-dimensional atomic chain density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51472215, 51222202, 91433103, 11274380, 11622437, 61674171, 11227403 and 11534010), the National Basic Research Program of China (Nos. 2014CB932500 and 2015CB21004), the 111 project (No. B16042) and the Fundamental Research Funds for the Central Universities (No. 16XNLQ01). J. S. Q. was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2016 of Renmin University of China. This work made use of the resources of the Center of Electron Microscopy of Zhejiang University. Calculations were performed at the Physics Laboratory for High-Performance Computing of Renmin University of China and at the Shanghai Supercomputer Center. We thank Prof. Ray F. Egerton for fruitful discussions and Dr. Qiang Xu for his assistance on in situ heating.

Supplementary material

12274_2017_1456_MOESM1_ESM.pdf (1.5 mb)
Deriving phosphorus atomic chains from few-layer black phosphorus
12274_2017_1456_MOESM2_ESM.avi (1.4 mb)
Supplementary material, approximately 1.37 MB.
12274_2017_1456_MOESM3_ESM.avi (834 kb)
Supplementary material, approximately 834 KB.

References

  1. [1]
    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.CrossRefGoogle Scholar
  2. [2]
    Kou, L. Z.; Chen, C. F.; Smith, S. C. Phosphorene: Fabrication, properties, and applications. J. Phys. Chem. Lett. 2015, 6, 2794–2805.CrossRefGoogle Scholar
  3. [3]
    Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.CrossRefGoogle Scholar
  4. [4]
    Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.Google Scholar
  5. [5]
    Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.CrossRefGoogle Scholar
  6. [6]
    Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. M.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853–859.CrossRefGoogle Scholar
  7. [7]
    Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.CrossRefGoogle Scholar
  8. [8]
    Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.CrossRefGoogle Scholar
  9. [9]
    Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.CrossRefGoogle Scholar
  10. [10]
    Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.Google Scholar
  11. [11]
    Lu, W. L.; Ma, X. M.; Fei, Z.; Zhou, J. G.; Zhang, Z. Y.; Jin, C. H.; Zhang, Z. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent raman spectra, and electronic transport measurements. Appl. Phys. Lett. 2015, 107, 021906.CrossRefGoogle Scholar
  12. [12]
    Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291.CrossRefGoogle Scholar
  13. [13]
    Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.CrossRefGoogle Scholar
  14. [14]
    Tran, V.; Yang, L. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B 2014, 89, 245407.CrossRefGoogle Scholar
  15. [15]
    Carvalho, A.; Rodin, A. S.; Neto, A. H. C. Phosphorene nanoribbons. Epl 2014, 108, 47005.CrossRefGoogle Scholar
  16. [16]
    Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 2014, 4, 6452.CrossRefGoogle Scholar
  17. [17]
    Han, X. Y.; Stewart, H. M.; Shevlin, S. A.; Catlow, C. R. A.; Guo, Z. X. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 2014, 14, 4607–4614.CrossRefGoogle Scholar
  18. [18]
    Farooq, M. U.; Hashmi, A.; Hong, J. Manipulation of magnetic state in armchair black phosphorene nanoribbon by charge doping. ACS Appl. Mater. Interfaces 2015, 7, 14423–14430.CrossRefGoogle Scholar
  19. [19]
    Liang, L. B.; Wang, J.; Lin, W. Z.; Sumpter, B. G.; Meunier, V.; Pan, M. H. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 2014, 14, 6400–6406.CrossRefGoogle Scholar
  20. [20]
    Peng, X. H.; Copple, A.; Wei, Q. Edge effects on the electronic properties of phosphorene nanoribbons. J. Appl. Phys. 2014, 116, 144301.CrossRefGoogle Scholar
  21. [21]
    Das, P. M.; Danda, G.; Cupo, A.; Parkin, W. M.; Liang, L. B.; Kharche, N.; Ling, X.; Huang, S. X.; Dresselhaus, M. S.; Meunier, V. et al. Controlled sculpture of black phosphorus nanoribbons. ACS Nano 2016, 10, 5687–5695.CrossRefGoogle Scholar
  22. [22]
    Jin, C. H.; Lan, H. P.; Peng, L. M.; Suenaga, K.; Iijima, S. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 2009, 102, 205501.CrossRefGoogle Scholar
  23. [23]
    Chuvilin, A.; Meyer, J. C.; Algara-Siller, G.; Kaiser, U. From graphene constrictions to single carbon chains. New J. Phys. 2009, 11, 083019.CrossRefGoogle Scholar
  24. [24]
    Cretu, O.; Komsa, H. P.; Lehtinen, O.; Algara-Siller, G.; Kaiser, U.; Suenaga, K.; Krasheninnikov, A. V. Experimental observation of boron nitride chains. ACS Nano 2014, 8, 11950–11957.CrossRefGoogle Scholar
  25. [25]
    Liu, X. F.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.CrossRefGoogle Scholar
  26. [26]
    Lin, J. H.; Zhang, Y. Y.; Zhou, W.; Pantelides, S. T. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 2016, 10, 2782–2790.CrossRefGoogle Scholar
  27. [27]
    Vierimaa, V.; Krasheninnikov, A. V.; Komsa, H. P. Phosphorene under electron beam: From monolayer to onedimensional chains. Nanoscale 2016, 8, 7949–7957.CrossRefGoogle Scholar
  28. [28]
    Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.CrossRefGoogle Scholar
  29. [29]
    Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.CrossRefGoogle Scholar
  30. [30]
    Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.CrossRefGoogle Scholar
  31. [31]
    Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L'Heureux, A. L.; Tang, N. Y. W.; Lé vesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832.CrossRefGoogle Scholar
  32. [32]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  33. [33]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  34. [34]
    Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  35. [35]
    Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101(R).CrossRefGoogle Scholar
  36. [36]
    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.CrossRefGoogle Scholar
  37. [37]
    Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2010, 22, 022201.Google Scholar
  38. [38]
    Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.CrossRefGoogle Scholar
  39. [39]
    Hu, Z.-X.; Kong, X.; Qiao, J.; Normand, B.; Ji, W. Interlayer electronic hybridization leads to exceptional thicknessdependent vibrational properties in few-layer black phosphorus. Nanoscale 2016, 8, 2740–2750.CrossRefGoogle Scholar
  40. [40]
    Liu, Z.; Tizei, L. H. G.; Sato, Y.; Lin, Y. C.; Yeh, C. H.; Chiu, P. W.; Terauchi, M.; Iijima, S.; Suenaga, K. Postsynthesis of h-BN/graphene heterostructures inside a STEM. Small 2016, 12, 252–259.CrossRefGoogle Scholar
  41. [41]
    Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. A singlet phosphinidene stable at room temperature. Chem 2016, 1, 147–153.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano DevicesRenmin University of ChinaBeijingChina
  3. 3.Key Laboratory of Strongly-coupled Quantum Matter Physics, Hefei National Laboratory for Physical Sciences at Microscale and Department of PhysicsUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations