Advertisement

Nano Research

, Volume 10, Issue 7, pp 2364–2376 | Cite as

Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage

  • Yuzhu Wu
  • Jiashen Meng
  • Qi Li
  • Chaojiang Niu
  • Xuanpeng Wang
  • Wei Yang
  • Wei Li
  • Liqiang Mai
Research Article

Abstract

Transition-metal oxides (TMOs) have gradually attracted attention from researchers as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of their high theoretical capacity. However, their poor cycling stability and inferior rate capability resulting from the large volume variation during the lithiation/sodiation process and their low intrinsic electronic conductivity limit their applications. To solve the problems of TMOs, carbon-based metal-oxide composites with complex structures derived from metal–organic frameworks (MOFs) have emerged as promising electrode materials for LIBs and SIBs. In this study, we adopted a facile interface-modulated method to synthesize yolk–shell carbon-based Co3O4 dodecahedrons derived from ZIF-67 zeolitic imidazolate frameworks. This strategy is based on the interface separation between the ZIF-67 core and the carbon-based shell during the pyrolysis process. The unique yolk–shell structure effectively accommodates the volume expansion during lithiation or sodiation, and the carbon matrix improves the electrical conductivity of the electrode. As an anode for LIBs, the yolk–shell Co3O4/C dodecahedrons exhibit a high specific capacity and excellent cycling stability (1,100 mAh·g−1 after 120 cycles at 200 mA·g−1). As an anode for SIBs, the composites exhibit an outstanding rate capability (307 mAh·g−1 at 1,000 mA·g−1 and 269 mAh·g−1 at 2,000 mA·g−1). Detailed electrochemical kinetic analysis indicates that the energy storage for Li+ and Na+ in yolk–shell Co3O4/C dodecahedrons shows a dominant capacitive behavior. This work introduces an effective approach for fabricating carbonbased metal-oxide composites by using MOFs as ideal precursors and as electrode materials to enhance the electrochemical performance of LIBs and SIBs.

Keywords

carbon-based metal oxide metal–organic frameworks (MOFs) yolk–shell structure lithium-ion batteries (LIBs) sodium-ion batteries (SIBs) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Basic Research Program of China (No. 2013CB934103), the National Natural Science Foundation of China (Nos. 51521001 and 51272197), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), the Fundamental Research Funds for the Central Universities (WUT: 22016III001, 2017IVA096) and the Foundation of National Excellent Doctoral Dissertation of PR China (No. 2016-YB-004); Prof. Liqiang Mai gratefully acknowledges the financial support from China Scholarship Council (No. 201606955096).

Supplementary material

12274_2017_1433_MOESM1_ESM.pdf (1.8 mb)
Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage

References

  1. [1]
    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.CrossRefGoogle Scholar
  2. [2]
    Liu, J. Addressing the grand challenges in energy storage. Adv. Funct. Mater. 2013, 23, 924–928.CrossRefGoogle Scholar
  3. [3]
    Wei, W.; Wang, Y. C.; Wu, H.; Al-Enizi, A. M.; Zhang, L. J.; Zheng, G. F. Transition metal oxide hierarchical nanotubes for energy applications. Nanotechnology 2016, 27, 02LT01.CrossRefGoogle Scholar
  4. [4]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  5. [5]
    Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A highrate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 2012, 3, 1149.CrossRefGoogle Scholar
  6. [6]
    Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.CrossRefGoogle Scholar
  7. [7]
    Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.CrossRefGoogle Scholar
  8. [8]
    Ding, Y. L.; Wen, Y. R.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett. 2015, 15, 1388–1394.CrossRefGoogle Scholar
  9. [9]
    Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Maier, J.; Yu, Y. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: Advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 2015, 5, 1401170.CrossRefGoogle Scholar
  10. [10]
    Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. 2016, 128, 6094–6097.CrossRefGoogle Scholar
  11. [11]
    Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.CrossRefGoogle Scholar
  12. [12]
    Yuan, S.; Wang, S.; Li, L.; Zhu, Y. H.; Zhang, X. B.; Yan, J. M. Integrating 3D flower-like hierarchical Cu2NiSnS4 with reduced graphene oxide as advanced anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9178–9184.CrossRefGoogle Scholar
  13. [13]
    Wang, S.; Yuan, S.; Yin, Y. B.; Zhu, Y. H.; Zhang, X. B.; Yan, J. M. Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Char. 2016, 33, 493–499.CrossRefGoogle Scholar
  14. [14]
    Huang, X. L.; Zhao, X.; Wang, Z. L.; Wang, L. M.; Zhang, X. B. Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 3764–3769.CrossRefGoogle Scholar
  15. [15]
    Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.CrossRefGoogle Scholar
  16. [16]
    Yu, Y.; Niu, C. J.; Han, C. H.; Zhao, K. N.; Meng, J. S.; Xu, X. M.; Zhang, P. F.; Wang, L.; Wu, Y. Z.; Mai, L. Q. Zinc pyrovanadate nanoplates embedded in graphene networks with enhanced electrochemical performance. Ind. Eng. Chem. Res. 2016, 55, 2992–2999.CrossRefGoogle Scholar
  17. [17]
    Mahmood, N.; Zhu, J. H.; Rehman, S.; Li, Q.; Hou, Y. L. Control over large-volume changes of lithium battery anodes via active—inactive metal alloy embedded in porous carbon. Nano Energy 2015, 15, 755–765.CrossRefGoogle Scholar
  18. [18]
    Roh, H. K.; Kim, H. K.; Kim, M. S.; Kim, D. H.; Chung, K. Y.; Roh, K. C.; Kim, K. B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844–1855.CrossRefGoogle Scholar
  19. [19]
    Xie, D.; Tang, W. J.; Wang, Y. D.; Xia, X. H.; Zhong, Y.; Zhou, D.; Wang, D. H.; Wang, X. L.; Tu, J. P. Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res. 2016, 9, 1618–1629.CrossRefGoogle Scholar
  20. [20]
    Wang, X. P.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wei, X. J.; Zhou, L.; Zhao, K. N.; Luo, W.; Yan, M. Y. et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodiumion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 2015, 5, 1500716.CrossRefGoogle Scholar
  21. [21]
    Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.CrossRefGoogle Scholar
  22. [22]
    Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996–1004.CrossRefGoogle Scholar
  23. [23]
    Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctionalelectrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234–2243.CrossRefGoogle Scholar
  24. [24]
    Meng, J. S.; Niu, C. J.; Liu, X.; Liu, Z. A.; Chen, H. L.; Wang, X. P.; Li, J. T.; Chen, W.; Guo, X. F.; Mai, L. Q. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Res. 2016, 9, 2445–2457.CrossRefGoogle Scholar
  25. [25]
    Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.CrossRefGoogle Scholar
  26. [26]
    Wang, S. B.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C. MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 12713–12718.CrossRefGoogle Scholar
  27. [27]
    Kim, W. S.; Choi, J.; Hong, S. H. Meso-porous siliconcoated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174–2181.CrossRefGoogle Scholar
  28. [28]
    Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.CrossRefGoogle Scholar
  29. [29]
    Yang, J.; Zhang, Y.; Sun, C. C.; Liu, H. Z.; Li, L. Q.; Si, W. L.; Huang, W.; Yan, Q. Y.; Dong, X. C. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 2016, 9, 612–621.CrossRefGoogle Scholar
  30. [30]
    Luo, B.; Zhi, L. J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 2015, 8, 456–477.CrossRefGoogle Scholar
  31. [31]
    Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2016, 9, 128–138.CrossRefGoogle Scholar
  32. [32]
    Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G. et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 2013, 25, 6250–6255.CrossRefGoogle Scholar
  33. [33]
    Wang, N.; Liu, Q. L.; Kang, D. M.; Gu, J. J.; Zhang, W.; Zhang, D. Facile self-cross-linking synthesis of 3D nanoporous Co3O4/carbon hybrid electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 16035–16044.CrossRefGoogle Scholar
  34. [34]
    Xu, X. D.; Cao, R. G.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988–4991.CrossRefGoogle Scholar
  35. [35]
    Shao, J.; Wan, Z. M.; Liu, H. M.; Zheng, H. Y.; Gao, T.; Shen, M.; Qu, Q. T.; Zheng, H. H. Metal organic frameworks-derived Co3O4 hollow dodecahedrons withcontrollable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2014, 2, 12194–12200.CrossRefGoogle Scholar
  36. [36]
    Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.CrossRefGoogle Scholar
  37. [37]
    Han, Y.; Zhao, M. L.; Dong, L.; Feng, J. M.; Wang, Y. J.; Li, D. J.; Li, X. F. MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries. J. Mater. Chem. A 2015, 3, 22542–22546.CrossRefGoogle Scholar
  38. [38]
    Tian, D.; Zhou, X. L.; Zhang, Y. H.; Zhou, Z.; Bu, X. H. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg. Chem. 2015, 54, 8159–8161.CrossRefGoogle Scholar
  39. [39]
    Hou, Y.; Li, J. Y.; Wen, Z. H.; Cui, S. M.; Yuan, C.; Chen, J. H. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 2015, 12, 1–8.CrossRefGoogle Scholar
  40. [40]
    Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.CrossRefGoogle Scholar
  41. [41]
    Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770–11775.CrossRefGoogle Scholar
  42. [42]
    Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.CrossRefGoogle Scholar
  43. [43]
    Yan, N.; Hu, L.; Li, Y.; Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q. W. Co3O4 nanocages for highperformance anode material in lithium-ion batteries. J. Phys. Chem. C 2012, 116, 7227–7235.CrossRefGoogle Scholar
  44. [44]
    Li, W. Y.; Xu, L. N.; Chen, J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 2005, 15, 851–857.CrossRefGoogle Scholar
  45. [45]
    Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.CrossRefGoogle Scholar
  46. [46]
    Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.CrossRefGoogle Scholar
  47. [47]
    Lee, J. E.; Yu, S. H.; Lee, D. J.; Lee, D. C.; Han, S. I.; Sung, Y. E.; Hyeon, T. Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy Environ. Sci. 2012, 5, 9528–9533.CrossRefGoogle Scholar
  48. [48]
    Zheng, C.; Zhou, X. F.; Cao, H. L.; Wang, G. H.; Liu, Z. P. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 2014, 258, 290–296.CrossRefGoogle Scholar
  49. [49]
    Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide compositemicrospheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584–1594.CrossRefGoogle Scholar
  50. [50]
    Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502–510.CrossRefGoogle Scholar
  51. [51]
    Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.CrossRefGoogle Scholar
  52. [52]
    Qu, Q. T.; Gao, T.; Zheng, H. Y.; Li, X. X.; Liu, H. M.; Shen, M.; Shao, J.; Zheng, H. H. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon 2015, 92, 119–125.CrossRefGoogle Scholar
  53. [53]
    Huang, G.; Zhang, F. F.; Du, X. C.; Wang, J. W.; Yin, D. M.; Wang, L. M. Core–shell NiFe2O4@TiO2 nanorods: An anode material with enhanced electrochemical performance for lithium-ion batteries. Chem.-Eur. J. 2014, 20, 11214–11219.CrossRefGoogle Scholar
  54. [54]
    Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911–1917.CrossRefGoogle Scholar
  55. [55]
    Kim, H. S.; Cook, J. B.; Tolbert, S. H.; Dunn, B. The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 2015, 162, A5083–A5090.CrossRefGoogle Scholar
  56. [56]
    Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathinVOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2016, 16, 742–747.CrossRefGoogle Scholar
  57. [57]
    Wang, J.; Polleux, J.; James, L. A.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.CrossRefGoogle Scholar
  58. [58]
    Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using etherbased electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541.CrossRefGoogle Scholar
  59. [59]
    Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224–230.CrossRefGoogle Scholar
  60. [60]
    Zhao, K. N.; Liu, F. N.; Niu, C. J.; Xu, W. W.; Dong, Y. F.; Zhang, L.; Xie, S. M.; Yan, M. Y.; Wei, Q. L.; Zhao, D. Y. et al. Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv. Sci. 2015, 2, 1500154.CrossRefGoogle Scholar
  61. [61]
    Rahman, M. M.; Glushenkov, A. M.; Ramireddy, T.; Chen, Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 2014, 50, 5057–5060.CrossRefGoogle Scholar
  62. [62]
    Jian, Z. L.; Liu, P.; Li, F. J.; Chen, M. W.; Zhou, H. S. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J. Mater. Chem. A 2014, 2, 13805–13809.CrossRefGoogle Scholar
  63. [63]
    Liu, Y. G.; Cheng, Z. Y.; Sun, H. Y.; Arandiyan, H.; Li, J. P.; Ahmad, M. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J. Power Sources 2015, 273, 878–884.CrossRefGoogle Scholar
  64. [64]
    Yang, J. P.; Zhou, T. F.; Zhu, R.; Chen, X. Q.; Guo, Z. P.; Fan, J. W.; Liu, H. K.; Zhang, W. X. Highly ordered dual porosity mesoporous cobalt oxide for sodium-ion batteries. Adv. Mater. Interfaces 2016, 3, 1500464.CrossRefGoogle Scholar
  65. [65]
    Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 2010, 22, 4126–4128.CrossRefGoogle Scholar
  66. [66]
    Naeyaert, P. J. P.; Avdeev, M.; Sharma, N.; Yahia, H. B.; Ling, C. D. Synthetic, structural, and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material. Chem. Mater. 2014, 26, 7067–7072.CrossRefGoogle Scholar
  67. [67]
    Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations