Nano Research

, Volume 10, Issue 4, pp 1282–1291 | Cite as

Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization

  • Bo Lei
  • Zehua Hu
  • Du Xiang
  • Junyong Wang
  • Goki Eda
  • Cheng HanEmail author
  • Wei ChenEmail author
Research Artice


Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted enormous research interests and efforts towards the development of versatile electronic and optical devices, owing to their extraordinary and unique fundamental properties and remarkable prospects in nanoelectronic applications. Among the TMDs, tungsten diselenide (WSe2) exhibits tunable ambipolar transport characteristics and superior optical properties such as high quantum efficiency. Herein, we demonstrate significant enhancement in the device performance of WSe2 phototransistor by in situ surface functionalization with cesium carbonate (Cs2CO3). WSe2 was found to be strongly doped with electrons after Cs2CO3 modification. The electron mobility of WSe2 increased by almost one order of magnitude after surface functionalization with 1.6-nm-thick Cs2CO3 decoration. Furthermore, the photocurrent of the WSe2-based phototransistor increased by nearly three orders of magnitude with the deposition of 1.6-nm-thick Cs2CO3. Characterizations by in situ photoelectron spectroscopy techniques confirmed the significant surface charge transfer occurring at the Cs2CO3/WSe2 interface. Our findings coupled with the tunable nature of the surface transfer doping method establish WSe2 as a promising candidate for future 2D materialsbased optoelectronic devices.


WSe2 in situ surface transfer doping performance enhancement phototransistor cesium carbonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



W. C. acknowledges the financial support from Singapore MOE Grant R143-000-652-112, National Natural Science Foundation of China (No. 21573156) and the technical support from Centre for Advanced 2D Materials and Graphene Research Centre for the device fabrication. G. E. acknowledges Singapore National Research Foundation, Prime Minister’s Office, Singapore, for funding the research under its Medium-sized Centre program as well as NRF Research Fellowship (No. NRF-NRFF2011-02). G. E. also acknowledges financial support from Singapore MOE (No. MOE2015-T2-2-123).

Supplementary material

12274_2016_1386_MOESM1_ESM.pdf (693 kb)
Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization


  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.CrossRefGoogle Scholar
  3. [3]
    Xu, Y.; Cheng, C.; Du, S. C.; Yang, J. Y.; Yu, B.; Luo, J.; Yin, W. Y.; Li, E. P.; Dong, S. R.; Ye, P. D. et al. Contacts between two- and three-dimensional materials: Ohmic, schottky, and p–n heterojunctions. ACS Nano 2016, 10, 4895–4919.CrossRefGoogle Scholar
  4. [4]
    Song, X. F.; Hu, J. L.; Zeng, H. B. Two-dimensional semiconductors: Recent progress and future perspectives. J. Mater. Chem. C 2013, 1, 2952–2969.CrossRefGoogle Scholar
  5. [5]
    Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.CrossRefGoogle Scholar
  6. [6]
    Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.CrossRefGoogle Scholar
  7. [7]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  8. [8]
    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.CrossRefGoogle Scholar
  9. [9]
    Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.CrossRefGoogle Scholar
  10. [10]
    Allain, A.; Kis, A. Electron and hole mobilities in singlelayer WSe2. ACS Nano 2014, 8, 7180–7185.CrossRefGoogle Scholar
  11. [11]
    Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.CrossRefGoogle Scholar
  12. [12]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  13. [13]
    Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing highperformance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.CrossRefGoogle Scholar
  14. [14]
    Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.CrossRefGoogle Scholar
  15. [15]
    Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. Carrier type control of WSe2 fieldeffect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26, 4223–4230.CrossRefGoogle Scholar
  16. [16]
    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.CrossRefGoogle Scholar
  17. [17]
    Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.CrossRefGoogle Scholar
  18. [18]
    Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X.-A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced Trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.CrossRefGoogle Scholar
  19. [19]
    Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X. A.; Hu, W. P.; Özyilmaz, B.; Neto, A. H. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.CrossRefGoogle Scholar
  20. [20]
    Han, C.; Lin, J. D.; Xiang, D.; Wang, C. C.; Wang, L.; Chen, W. Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study. Appl. Phys. Lett. 2013, 103, 263117.CrossRefGoogle Scholar
  21. [21]
    Wang, S. F.; Zhao, W. J.; Giustiniano, F.; Eda, G. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys. Chem. Chem. Phys. 2016, 18, 4304–4309.CrossRefGoogle Scholar
  22. [22]
    Li, G.; Chu, C. W.; Shrotriya, V.; Huang, J.; Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 2006, 88, 253503.CrossRefGoogle Scholar
  23. [23]
    Wu, C.-I.; Lin, C.-T.; Chen, Y.-H.; Chen, M.-H.; Lu, Y.-J.; Wu, C.-C. Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices. Appl. Phys. Lett. 2006, 88, 152104.CrossRefGoogle Scholar
  24. [24]
    Huang, J.; Xu, Z.; Yang, Y. Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. Adv. Funct. Mater. 2007, 17, 1966–1973.CrossRefGoogle Scholar
  25. [25]
    Vaynzof, Y.; Kabra, D.; Chua, L. L.; Friend, R. H. Improved electron injection in poly(9,9'-dioctylfluorene)-co-benzothiodiazole via cesium carbonate by means of coannealing. Appl. Phys. Lett. 2011, 98, 113306.CrossRefGoogle Scholar
  26. [26]
    Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272.CrossRefGoogle Scholar
  27. [27]
    Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853–6860.CrossRefGoogle Scholar
  28. [28]
    Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.CrossRefGoogle Scholar
  29. [29]
    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.CrossRefGoogle Scholar
  30. [30]
    Chen, C.-H.; Wu, C.-L.; Pu, J.; Chiu, M.-H.; Kumar, P.; Takenobu, T.; Li, L.-J. Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration. 2D Mater. 2014, 1, 034001.CrossRefGoogle Scholar
  31. [31]
    Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824–4831.CrossRefGoogle Scholar
  32. [32]
    Kang, D.-H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W.-S.; Jang, Y. H.; Lee, S.; Park, J.-H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099–1107.CrossRefGoogle Scholar
  33. [33]
    Kang, D.-H.; Kim, M.-S.; Shim, J.; Jeon, J.; Park, H.-Y.; Jung, W.-S.; Yu, H.-Y.; Pang, C.-H.; Lee, S.; Park, J.-H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.CrossRefGoogle Scholar
  34. [34]
    Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.CrossRefGoogle Scholar
  35. [35]
    Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923–930.CrossRefGoogle Scholar
  36. [36]
    Liu, H. S.; Han, N. N.; Zhao, J. J. Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: From structures to electronic properties. RSC Adv. 2015, 5, 17572–17581.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsNational University of SingaporeSingaporeSingapore
  2. 2.Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingaporeSingapore
  3. 3.Department of ChemistryNational University of SingaporeSingaporeSingapore
  4. 4.SZU-NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyShenzhen UniversityShenzhenChina
  5. 5.National University of Singapore (Suzhou) Research InstituteSuzhouChina

Personalised recommendations