Advertisement

Nano Research

, Volume 10, Issue 6, pp 1980–1995 | Cite as

Size and time dependent internalization of label-free nano-graphene oxide in human macrophages

  • Rafael G. Mendes
  • Angelo Mandarino
  • Britta Koch
  • Anne K. Meyer
  • Alicja Bachmatiuk
  • Cordula Hirsch
  • Thomas Gemming
  • Oliver G. Schmidt
  • Zhongfan Liu
  • Mark H. Rümmeli
Research Article

Abstract

Graphene oxide shows great promise as a material for biomedical applications, e.g., as a multi-drug delivery platform. With this in view, reports of studies on the interaction between nanosized graphene oxide flakes and biological cells are beginning to emerge. However, the number of studies remains limited, and most used labeled graphene oxide samples to track the material upon endocytosis. Unfortunately, the labeling process alters the surface functionality of the graphene oxide, and this additional functionalization has been shown to alter the cellular response. Hence, in this work we used label-free graphene oxide. We carefully tracked the uptake of three different nanoscale graphene oxide flake size distributions using scanning/transmission electron microscopy. Uptake was investigated in undifferentiated human monocyte cells (THP-1) and differentiated macrophage cells. The data show clear size dependence for uptake, such that larger graphene oxide flakes (and clusters) are more easily taken up by the cells compared to smaller flakes. Moreover, uptake is shown to occur very rapidly, within two min of incubation with THP-1 cells. The data highlights a crucial need for cellular incubation studies with nanoparticles, to be conducted for short incubation periods as certain dependencies (e.g., size and concentration) are lost with longer incubation periods.

Keywords

graphene oxide THP-1 cells label-free uptake size dependence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

A. B. and M. H. R. thank the EOARD for support. A. B. thanks the National Science Centre for the financial support within the frames of the Sonata Program (Grant agreement 2014/13/D/ST5/02853). M. H. R. thanks the National Natural Science Foundation of China (No. 51672181). M. H. R., R. G. M. and A. M. conceived the experiments, prepared samples and collected the data. All authors were involved in the design of the experiments, analysis of the data and manuscript preparation.

Supplementary material

12274_2016_1385_MOESM1_ESM.pdf (5.4 mb)
Size and time dependent internalization of label-free nano-graphene oxide in human macrophages

References

  1. [1]
    Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.CrossRefGoogle Scholar
  2. [2]
    Twarock, R.; Keef, T. Viruses and geometry: Where symmetry meets function. Microbiol. Today 2010, 37, 24–27.Google Scholar
  3. [3]
    Cermelli, P.; Indelicato, G.; Twarock, R. The role of symmetry in conformational changes of viral capsids: A mathematical approach. In Discrete and Topological Models in Molecular Biology; Jonoska, N.; Saito, M, Eds.; Springer: Berlin Heidelberg, 2014; pp 217–240.CrossRefGoogle Scholar
  4. [4]
    Feldherr, C. M.; Lanford, R. E.; Akin, D. Signal-mediated nuclear transport in simian virus 40-transformed cells is regulated by large tumor antigen. Proc. Natl. Acad. Sci. USA 1992, 89, 11002–11005.CrossRefGoogle Scholar
  5. [5]
    Dasgupta, S.; Auth, T.; Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014, 14, 687–693.CrossRefGoogle Scholar
  6. [6]
    Mendes, R. G.; Bachmatiuk, A.; Büchner, B.; Cuniberti, G.; Rümmeli, M. H. Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B 2013, 1, 401–428.CrossRefGoogle Scholar
  7. [7]
    Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.CrossRefGoogle Scholar
  8. [8]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.CrossRefGoogle Scholar
  9. [9]
    Wang, Y.; Li, Z. H.; Hu, D. H.; Lin, C.-T.; Li, J. H.; Lin, Y. H. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 2010, 132, 9274–9276.CrossRefGoogle Scholar
  10. [10]
    Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. J. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 2015, 9, 10498–10515.CrossRefGoogle Scholar
  11. [11]
    Mu, Q. X.; Su, G. X.; Li, L. W.; Gilbertson, B. O.; Yu, L. H.; Zhang, Q.; Sun, Y.-P.; Yan, B. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl. Mater. Interfaces 2012, 4, 2259–2266.CrossRefGoogle Scholar
  12. [12]
    Hinderliter, P. M.; Minard, K. R.; Orr, G.; Chrisler, W. B.; Thrall, B. D.; Pounds, J. G.; Teeguarden, J. G. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol. 2010, 7, 36.CrossRefGoogle Scholar
  13. [13]
    Villanueva, A.; Cañete, M.; Roca, A. G.; Calero, M.; Veintemillas-Verdaguer, S.; Serna, C. J.; del Puerto Morales, M.; Miranda, R. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 2009, 20, 115103.CrossRefGoogle Scholar
  14. [14]
    Moros, M.; Hernáez, B.; Garet, E.; Dias, J. T.; Sáez, B.; Grazú, V.; González-Fernández, Á.; Alonso, C.; de la Fuente, J. M. Monosaccharides versus PEG-functionalized NPs: Influence in the cellular uptake. ACS Nano 2012, 6, 1565–1577.CrossRefGoogle Scholar
  15. [15]
    Perumal, O. P.; Inapagolla, R.; Kannan, S.; Kannan, R. M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 2008, 29, 3469–3476.CrossRefGoogle Scholar
  16. [16]
    Kamath, S.; Bhattacharyya, D.; Padukudru, C.; Timmons, R. B.; Tang, L. Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A 2008, 86, 617–626.CrossRefGoogle Scholar
  17. [17]
    Vila, M.; Portolés, M. T.; Marques, P. A. A. P.; Feito, M. J.; Matesanz, M. C.; Ramírez-Santillán, C.; Gonçalves, G.; Cruz, S. M. A.; Nieto, A.; Vallet-Regi, M. Cell uptake survey of pegylated nanographene oxide. Nanotechnology 2012, 23, 465103.CrossRefGoogle Scholar
  18. [18]
    Shapiro, H. M. Practical Flow Cytometry, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003.CrossRefGoogle Scholar
  19. [19]
    Mendes, R. G.; Koch, B.; Bachmatiuk, A.; Ma, X.; Sanchez, S.; Damm, C.; Schmidt, O. G.; Gemming, T.; Eckert, J.; Rümmeli, M. H. A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J. Mater. Chem. B 2015, 3, 2522–2529.CrossRefGoogle Scholar
  20. [20]
    Murphy, K.; Travers, P.; Walport, M. Janeway’s Immuno Biology, 7th ed.; Garland Science: New York, 2008.Google Scholar
  21. [21]
    Daigneault, M.; Preston, J. A.; Marriott, H. M.; Whyte, M. K. B.; Dockrell, D. H. The identification of markers of macrophage differentiation in pma-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 2010, 5, e8668.CrossRefGoogle Scholar
  22. [22]
    Hsiao, I. L.; Gramatke, A. M.; Joksimovic, R.; Sokolowski, M.; Gradzielski, M.; Haase, A. Size and cell type dependent uptake of silica nanoparticles. J. Nanomed. Nanotechnol. 2014, 5, 248.Google Scholar
  23. [23]
    Blechinger, J.; Bauer, A. T.; Torrano, A. A.; Gorzelanny, C.; Bräuchle, C.; Schneider, S. W. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small 2013, 9, 3970–3980.CrossRefGoogle Scholar
  24. [24]
    Kuhn, D. A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rustishauser, B. Different endocytic uptake mechanisms for nanoparticles in epithelial cells and macrophages. J. Nanotechol. 2014, 5, 1625–1636.Google Scholar
  25. [25]
    Douglas, K. L.; Piccirillo, C. A.; Tabrizian, M. Cell linedependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur. J. Pharm. Biopharm. 2008, 68, 676–687.CrossRefGoogle Scholar
  26. [26]
    Hirota, K.; Terada, H. Endocytosis of particle formulations by macrophages and its application to clinical treatment. In Molecular Regulation of Endocytosis; Ceresa, B., Ed.; InTech: Rijeka, 2012.Google Scholar
  27. [27]
    Coulter, J. A.; Jain, S.; Butterworth, K. T.; Taggart, L. E.; Dickson, G. R.; McMahon, S. J.; Hyland, W. B.; Muir, M. F.; Trainor, C.; Hounsell, A. R. et al. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int. J. Nanomedicine 2012, 7, 2673–2685.CrossRefGoogle Scholar
  28. [28]
    Makino, K.; Yamamoto, N.; Higuchi, K.; Harada, N.; Ohshima, H.; Terada, H. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: Effects of the size and surface properties of the microspheres. Colloids Surf. B Biointerfaces 2003, 27, 33–39.CrossRefGoogle Scholar
  29. [29]
    Hasegawa, T.; Hirota, K.; Tomoda, K.; Ito, F.; Inagawa, H.; Kochi, C.; Soma, G.-I.; Makino, K.; Terada, H. Phagocytic activity of alveolar macrophages toward polystyrene latex microspheres and PLGA microspheres loaded with antituberculosis agent. Colloids Surf. B Biointerfaces 2007, 60, 221–228.CrossRefGoogle Scholar
  30. [30]
    Zhang, S. L.; Gao, H. J.; Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015, 9, 8655–8671.CrossRefGoogle Scholar
  31. [31]
    Huang, C. J.; Zhang, Y.; Yuan, H. Y.; Gao, H. J.; Zhang, S. L. Role of nanoparticle geometry in endocytosis: Laying down to stand up. Nano Lett. 2013, 13, 4546–4550.CrossRefGoogle Scholar
  32. [32]
    Shi, X. H.; von dem Bussche, A.; Hurt, R. H.; Kane, A. B.; Gao, H. J. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 2011, 6, 714–719.CrossRefGoogle Scholar
  33. [33]
    Yi, X.; Shi, X. H.; Gao, H. J. A universal law for cell uptake of one-dimensional nanomaterials. Nano Lett. 2014, 14, 1049–1055.CrossRefGoogle Scholar
  34. [34]
    Wang, Z. Y.; Zhu, W. P.; Qiu, Y.; Yi, X.; von dem Bussche, A.; Kane, A.; Gao, H. J.; Koski, K.; Hurt, R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 1750–1780.CrossRefGoogle Scholar
  35. [35]
    Li, Y. F.; Yuan, H. Y.; von dem Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. J. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA 2013, 110, 12295–12300.CrossRefGoogle Scholar
  36. [36]
    Yi, X.; Gao, H. J. Cell interaction with graphene microsheets: Near-orthogonal cutting versus parallel attachment. Nanoscale 2015, 7, 5457–5467.CrossRefGoogle Scholar
  37. [37]
    Lunov, O.; Syrovets, T.; Loos, C.; Beil, J.; Delacher, M.; Tron, K.; Nienhaus, G. U.; Musyanovych, A.; Mailänder, V.; Landfester, K. et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 2011, 5, 1657–1669.CrossRefGoogle Scholar
  38. [38]
    Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  39. [39]
    Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Berichte der Dtsch. Chem. Gesellschaft 1898, 31, 1481–1487.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rafael G. Mendes
    • 1
    • 2
  • Angelo Mandarino
    • 2
  • Britta Koch
    • 2
  • Anne K. Meyer
    • 2
  • Alicja Bachmatiuk
    • 1
    • 2
    • 3
  • Cordula Hirsch
    • 4
  • Thomas Gemming
    • 2
  • Oliver G. Schmidt
    • 2
    • 5
  • Zhongfan Liu
    • 1
    • 6
  • Mark H. Rümmeli
    • 1
    • 2
    • 3
  1. 1.College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina
  2. 2.IFW Dresden, Institute for Solid State and Materials ResearchDresdenGermany
  3. 3.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland
  4. 4.EMPA - Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland
  5. 5.Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitzGermany
  6. 6.Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations