Nano Research

, Volume 10, Issue 4, pp 1163–1177 | Cite as

High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

  • John W. F. To
  • Jia Wei Desmond Ng
  • Samira Siahrostami
  • Ai Leen Koh
  • Yangjin Lee
  • Zhihua Chen
  • Kara D. Fong
  • Shucheng Chen
  • Jiajun He
  • Won-Gyu Bae
  • Jennifer Wilcox
  • Hu Young Jeong
  • Kwanpyo Kim
  • Felix Studt
  • Jens K. Nørskov
  • Thomas F. Jaramillo
  • Zhenan Bao
Research Article

Abstract

The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O2-H2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of a regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. This work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.

Keywords

electrocatalysis porous carbon density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1347_MOESM1_ESM.pdf (3.2 mb)
High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

References

  1. [1]
    Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  2. [2]
    Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.CrossRefGoogle Scholar
  3. [3]
    Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.CrossRefGoogle Scholar
  4. [4]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  5. [5]
    Ng, J. W. D.; Gorlin, Y.; Hatsukade, T.; Jaramillo, T. F. A precious-metal-free regenerative fuel cell for storing renewable electricity. Adv. Energy Mater. 2013, 3, 1545–1550.CrossRefGoogle Scholar
  6. [6]
    Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.CrossRefGoogle Scholar
  7. [7]
    Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.CrossRefGoogle Scholar
  8. [8]
    Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.CrossRefGoogle Scholar
  9. [9]
    Wang, D.-W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.CrossRefGoogle Scholar
  10. [10]
    Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metalfree bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.CrossRefGoogle Scholar
  11. [11]
    Zhou, X. J.; Qiao, J. L.; Yang, L.; Zhang, J. J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.CrossRefGoogle Scholar
  12. [12]
    Liang, H.-W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.CrossRefGoogle Scholar
  13. [13]
    Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H. W.; Fang, L.; Gong, J. R. Controllable N-doping of graphene. Nano Lett. 2010, 10, 4975–4980.CrossRefGoogle Scholar
  14. [14]
    Lin, Y.-C.; Lin, C.-Y.; Chiu, P.-W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110.CrossRefGoogle Scholar
  15. [15]
    Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M.-A.; Miyata, S. Interplay between nitrogen dopants and native point defects in graphene. Phys. Rev. B 2012, 85, 165439.CrossRefGoogle Scholar
  16. [16]
    Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.CrossRefGoogle Scholar
  17. [17]
    Zhao, Z. H.; Xia, Z. H. Design principles for dual-elementdoped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 2016, 6, 1553–1558.CrossRefGoogle Scholar
  18. [18]
    Jin, J. T.; Pan, F. P.; Jiang, L. H.; Fu, X. G.; Liang, A. M.; Wei, Z. Y.; Zhang, J. Y.; Sun, G. Q. Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano 2014, 8, 3313–3321.CrossRefGoogle Scholar
  19. [19]
    Ranjbar Sahraie, N.; Paraknowitsch, J. P.; Göbel, C.; Thomas, A.; Strasser, P. Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems. J. Am. Chem. Soc. 2014, 136, 14486–14497.CrossRefGoogle Scholar
  20. [20]
    Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.Google Scholar
  21. [21]
    Yang, H. B.; Miao, J. W.; Hung, S.-F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.CrossRefGoogle Scholar
  22. [22]
    Ma, T. Y.; Ran, J. R.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem., Int. Ed. 2015, 54, 4646–4650.CrossRefGoogle Scholar
  23. [23]
    Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133–4142.CrossRefGoogle Scholar
  24. [24]
    Kim, O.-H.; Cho, Y.-H.; Chung, D. Y.; Kim, M. J.; Yoo, J. M.; Park, J. E.; Choe, H.; Sung, Y.-E. Facile and gram-scale synthesis of metal-free catalysts: Toward realistic applications for fuel cells. Sci. Rep. 2015, 5, 8376.CrossRefGoogle Scholar
  25. [25]
    Sevilla, M.; Yu, L. H.; Fellinger, T. P.; Fuertes, A. B.; Titirici, M.-M. Polypyrrole-derived mesoporous nitrogendoped carbons with intrinsic catalytic activity in the oxygen reduction reaction. RSC Adv. 2013, 3, 9904–9910.CrossRefGoogle Scholar
  26. [26]
    To, J. W. F.; He, J. J.; Mei, J. G.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S. C.; Bae, W.-G.; Pan, L. J.; Tok, J. B.-H. et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.CrossRefGoogle Scholar
  27. [27]
    Wan, Y.; Shi, Y. F.; Zhao, D. Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 2008, 20, 932–945.CrossRefGoogle Scholar
  28. [28]
    Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc. 1998, 120, 8963–8970.CrossRefGoogle Scholar
  29. [29]
    Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020–1024.CrossRefGoogle Scholar
  30. [30]
    Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758.CrossRefGoogle Scholar
  31. [31]
    Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. 2005, 117, 7215–7221.CrossRefGoogle Scholar
  32. [32]
    Zhong, M. J.; Kim, E. K.; McGann, J. P.; Chun, S.-E.; Whitacre, J. F.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J. Am. Chem. Soc. 2012, 134, 14846–14857.CrossRefGoogle Scholar
  33. [33]
    Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.CrossRefGoogle Scholar
  34. [34]
    Byon, H. R.; Suntivich, J.; Shao-Horn, Y. Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 2011, 23, 3421–3428.CrossRefGoogle Scholar
  35. [35]
    Zhou, X. J.; Qiao, J. L.; Yang, L.; Zhang, J. J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.CrossRefGoogle Scholar
  36. [36]
    Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.CrossRefGoogle Scholar
  37. [37]
    Serov, A.; Artyushkova, K.; Atanassov, P. Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: Synthesis, structure, and reactivity. Adv. Energy Mater. 2014, 4, 1301735.CrossRefGoogle Scholar
  38. [38]
    Couturier, G.; Kirk, D. W.; Hyde, P. J.; Srinivasan, S. Electrocatalysis of the hydrogen oxidation and of the oxygen reduction reactions of Pt and some alloys in alkaline medium. Electrochim. Acta 1987, 32, 995–1005.CrossRefGoogle Scholar
  39. [39]
    Hsueh, K. L.; Gonzalez, E. R.; Srinivasan, S. Electrolyte effects on oxygen reduction kinetics at platinum: A rotating ring-disc electrode analysis. Electrochim. Acta 1983, 28, 691–697.CrossRefGoogle Scholar
  40. [40]
    Tammeveski, K.; Tenno, T.; Claret, J.; Ferrater, C. Electrochemical reduction of oxygen on thin-film Pt electrodes in 0.1 M KOH. Electrochim. Acta 1997, 42, 893–897.CrossRefGoogle Scholar
  41. [41]
    Kibsgaard, J.; Gorlin, Y.; Chen, Z. B.; Jaramillo, T. F. Meso-structured platinum thin films: Active and stable electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 7758–7765.CrossRefGoogle Scholar
  42. [42]
    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan. (n. d.) [Online]. http: //energy.gov/eere/fuelcells/downloads/fuel-cell-technologiesoffice-multi-year-research-development-and-22 (accessed Jan 29, 2016).Google Scholar
  43. [43]
    Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.CrossRefGoogle Scholar
  44. [44]
    Ng, J. W. D.; Hellstern, T. R.; Kibsgaard, J.; Hinckley, A. C.; Benck, J. D.; Jaramillo, T. F. Polymer electrolyte membrane electrolyzers utilizing non-precious mo-based hydrogen evolution catalysts. ChemSusChem 2015, 8, 3512–3519.CrossRefGoogle Scholar
  45. [45]
    Wen, Z. H.; Ci, S. Q.; Hou, Y.; Chen, J. H. Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6496–6500.CrossRefGoogle Scholar
  46. [46]
    Stöhr, B.; Boehm, H.; Schlögl, R. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 1991, 29, 707–720.CrossRefGoogle Scholar
  47. [47]
    Palaniselvam, T.; Valappil, M. O.; Illathvalappil, R.; Kurungot, S. Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 2014, 7, 1059–1067.CrossRefGoogle Scholar
  48. [48]
    Waki, K.; Wong, R. A.; Oktaviano, H. S.; Fujio, T.; Nagai, T.; Kimoto, K.; Yamada, K. Non-nitrogen doped and non-metal oxygen reduction electrocatalysts based on carbon nanotubes: Mechanism and origin of ORR activity. Energy Environ. Sci. 2014, 7, 1950–1958.CrossRefGoogle Scholar
  49. [49]
    Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.CrossRefGoogle Scholar
  50. [50]
    Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.CrossRefGoogle Scholar
  51. [51]
    Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.CrossRefGoogle Scholar
  52. [52]
    Kim, Y.; Ihm, J.; Yoon, E.; Lee, G.-D. Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 2011, 84, 075445.CrossRefGoogle Scholar
  53. [53]
    Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  54. [54]
    Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2012, 2, 1654–1660.CrossRefGoogle Scholar
  55. [55]
    Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 2005, 127, 12480–12481.CrossRefGoogle Scholar
  56. [56]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  57. [57]
    Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.CrossRefGoogle Scholar
  58. [58]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar
  59. [59]
    Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.CrossRefGoogle Scholar
  60. [60]
    Landon, J.; Demeter, E.; Inoglu, N.; Keturakis, C.; Wachs, I. E.; Vasic, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.CrossRefGoogle Scholar
  61. [61]
    Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.CrossRefGoogle Scholar
  62. [62]
    Liang, C. D.; Dai, S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 2006, 128, 5316–5317.CrossRefGoogle Scholar
  63. [63]
    Ng, J. W. D.; Gorlin, Y.; Nordlund, D.; Jaramillo, T. F. Nanostructured manganese oxide supported onto particulate glassy carbon as an active and stable oxygen reduction catalyst in alkaline-based fuel cells. J. Electrochem. Soc. 2014, 161, D3105–D3112.CrossRefGoogle Scholar
  64. [64]
    Bahn, S. R.; Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 2002, 4, 56–66.CrossRefGoogle Scholar
  65. [65]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.Google Scholar
  66. [66]
    Adllan, A. A.; Dal Corso, A. Ultrasoft pseudopotentials and projector augmented-wave data sets: Application to diatomic molecules. J. Phys.: Condens. Matter 2011, 23, 425501.Google Scholar
  67. [67]
    Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.; Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 2012, 85, 235149.CrossRefGoogle Scholar
  68. [68]
    Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Jacobsen, K. W.; Bligaard, T.; Nørskov, J. K. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 2014, 345, 197–200.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • John W. F. To
    • 1
  • Jia Wei Desmond Ng
    • 1
    • 2
  • Samira Siahrostami
    • 1
  • Ai Leen Koh
    • 3
  • Yangjin Lee
    • 4
  • Zhihua Chen
    • 1
  • Kara D. Fong
    • 1
  • Shucheng Chen
    • 1
  • Jiajun He
    • 5
  • Won-Gyu Bae
    • 1
  • Jennifer Wilcox
    • 5
  • Hu Young Jeong
    • 6
  • Kwanpyo Kim
    • 4
  • Felix Studt
    • 7
    • 8
    • 9
  • Jens K. Nørskov
    • 1
    • 7
  • Thomas F. Jaramillo
    • 1
  • Zhenan Bao
    • 1
  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.Institute of Chemical and Engineering SciencesAgency for Science, Technology and ResearchJurong IslandSingapore
  3. 3.Stanford Nano Shared FacilitiesStanford UniversityStanfordUSA
  4. 4.Department of PhysicsUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  5. 5.Department of Chemical and Biological EngineeringColorado School of MinesGoldenUSA
  6. 6.UNIST Central Research Facilities (UCRF)Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  7. 7.SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator LaboratoryMenlo ParkUSA
  8. 8.Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  9. 9.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations