Nano Research

, Volume 10, Issue 2, pp 437–455 | Cite as

Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film

  • Chang Kyu Jeong
  • Sung Beom Cho
  • Jae Hyun Han
  • Dae Yong Park
  • Suyoung Yang
  • Kwi-Il Park
  • Jungho Ryu
  • Hoon Sohn
  • Yong-Chae Chung
  • Keon Jae Lee
Research Article


Controlling the properties of piezoelectric thin films is a key aspect for designing highly efficient flexible electromechanical devices. In this study, the crystallographic phenomena of PbZr1–x Ti x O3 (PZT) thin films caused by distinguished interfacial effects are deeply investigated by overlooking views, including not only an experimental demonstration but also ab initio modeling. The polymorphic phase balance and crystallinity, as well as the crystal orientation of PZT thin films at the morphotropic phase boundary (MPB), can be stably modulated using interfacial crystal structures. Here, interactions with MgO stabilize the PZT crystallographic system well and induce the texturing influences, while the PZT film remains quasi-stable on a conventional Al2O3 wafer. On the basis of this fundamental understanding, a high-output flexible energy harvester is developed using the controlled-PZT system, which shows significantly higher performance than the unmodified PZT generator. The voltage, current, and power densities are improved by 556%, 503%, and 822%, respectively, in comparison with the previous flexional single-crystalline piezoelectric device. Finally, the improved flexible generator is applied to harvest tiny vibrational energy from a real traffic system, and it is used to operate a commercial electronic unit. These results clearly indicate that atomic-scale designs can produce significant impacts on macroscopic applications.


energy harvesting morphotropic phase boundary (MPB) piezoelectric first-principles calculation lead zirconium titanate (PZT) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the CEO of RoboPrint Co., Jung Gyu Park. This study was backed up by the research project–Product Development of Wearable Self-Powered Energy Device and Integrated Self-Powered Energy Device from PEPS (No. G01150219). This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 2016M3A7B4910636). This is also supported by Global Frontier R&D Program on Center for Integrated Smart Sensors (No. CISS-2016M3A6A6929958) funded by MSIP through NRF of Korea government. This work was additionally supported by Basic Science Research Program through the NRF of Korea funded by MSIP (No. 2016R1A2B4010674).

Supplementary material

12274_2016_1304_MOESM1_ESM.pdf (3.6 mb)
Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film


  1. [1]
    Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.CrossRefGoogle Scholar
  2. [2]
    Wang, X. D. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy 2012, 1, 13–24.CrossRefGoogle Scholar
  3. [3]
    Larcher, L.; Roy, S.; Mallick, D.; Podder, P.; de Vittorio, M.; Todaro, T.; Guido, F.; Bertacchini, A.; Hinchet, R.; Keraudy, J. et al. Vibrational energy harvesting. In Beyond-CMOS Nanodevices 1; Balestra, F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014.Google Scholar
  4. [4]
    Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.CrossRefGoogle Scholar
  5. [5]
    Hwang, G.-T.; Byun, M.; Jeong, C. K.; Lee, K. J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthcare Mater. 2015, 4, 646–658.CrossRefGoogle Scholar
  6. [6]
    Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.CrossRefGoogle Scholar
  7. [7]
    Park, K. I.; Son, J. H.; Hwang, G. T.; Jeong, C. K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S. H.; Byun, M.; Wang, Z. L. et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520.CrossRefGoogle Scholar
  8. [8]
    Jeong, C. K.; Park, K.-I.; Son, J. H.; Hwang, G.-T.; Lee, S. H.; Park, D. Y.; Lee, H. E.; Lee, H. K.; Byun, M.; Lee, K. J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043.CrossRefGoogle Scholar
  9. [9]
    Hwang, G. T.; Park, H.; Lee, J. H.; Oh, S.; Park, K. I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C. K.; No, K. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 2014, 26, 4880–4887.CrossRefGoogle Scholar
  10. [10]
    Hwang, G.-T.; Yang, J.; Yang, S. H.; Lee, H.-Y.; Lee, M.; Park, D. Y.; Han, J. H.; Lee, S. J.; Jeong, C. K.; Kim, J. et al. A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT. Adv. Energy Mater. 2015, 5, 1500051.CrossRefGoogle Scholar
  11. [11]
    Hwang, G.-T.; Kim, Y.; Lee, J.-H.; Oh, S.; Jeong, C. K.; Park, D. Y.; Ryu, J.; Kwon, H.; Lee, S.-G.; Joung, B. et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 2015, 8, 2677–2684.CrossRefGoogle Scholar
  12. [12]
    Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G.-T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.CrossRefGoogle Scholar
  13. [13]
    Baek, S. H.; Park, J.; Kim, D. M.; Aksyuk, V. A.; Das, R. R.; Bu, S. D.; Felker, D. A.; Lettieri, J.; Vaithyanathan, V.; Bharadwaja, S. S. N. et al. Giant piezoelectricity on si for hyperactive MEMS. Science 2011, 334, 958–961.CrossRefGoogle Scholar
  14. [14]
    Lee, H. J.; Zhang, S. J.; Luo, J.; Li, F.; Shrout, T. R. Thickness-dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Adv. Funct. Mater. 2010, 20, 3154–3162.CrossRefGoogle Scholar
  15. [15]
    Kang, S.-J. L.; Park, J.-H.; Ko, S.-Y.; Lee, H.-Y. Solid-state conversion of single crystals: The principle and the stateof-the-art. J. Am. Ceram. Soc. 2015, 98, 347–360.CrossRefGoogle Scholar
  16. [16]
    Du, X. H.; Zheng, J. H.; Belegundu, U.; Uchino, K. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 1998, 72, 2421–2423.CrossRefGoogle Scholar
  17. [17]
    Taylor, D. V.; Damjanovic, D. Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and “random” crystallographic orientation. Appl. Phys. Lett. 2000, 76, 1615–1617.CrossRefGoogle Scholar
  18. [18]
    Park, C.-S.; Kim, S.-W.; Park, G.-T.; Choi, J.-J.; Kim, H.-E. Orientation control of lead zirconate titanate film by combination of sol-gel and sputtering deposition. J. Mater. Res. 2005, 20, 243–246.CrossRefGoogle Scholar
  19. [19]
    Qi, Y.; Jafferis, N. T.; Lyons, K.; Lee, C. M.; Ahmad, H.; McAlpine, M. C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010, 10, 524–525.CrossRefGoogle Scholar
  20. [20]
    Brooks, K. G.; Reaney, I. M.; Klissurska, R.; Huang, Y.; Bursill, L.; Setter, N. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates. J. Mater. Res. 1994, 9, 2540–2553.CrossRefGoogle Scholar
  21. [21]
    Kalpat, S.; Uchino, K. Highly oriented lead zirconium titanate thin films: Growth, control of texture, and its effect on dielectric properties. J. Appl. Phys. 2001, 90, 2703–2710.CrossRefGoogle Scholar
  22. [22]
    Qin, H. X.; Zhu, J. S.; Jin, Z. Q.; Wang, Y. PZT thin films with preferred-orientation induced by external stress. Thin Solid Films 2000, 379, 72–75.CrossRefGoogle Scholar
  23. [23]
    Cattan, E.; Velu, G.; Jaber, B.; Remiens, D.; Thierry, B. Structure control of Pb(Zr, Ti)O3 films using PbTiO3 buffer layers produced by magnetron sputtering. Appl. Phys. Lett. 1997, 70, 1718–1720.CrossRefGoogle Scholar
  24. [24]
    Park, C.-H.; Son, Y.-G.; Won, M.-S. Microstructure and ferroelectric properties of r. f. magnetron sputtering derived PZT thin films deposited on interlayer (PbO/TiO2). Microchem. J. 2005, 80, 201–206.CrossRefGoogle Scholar
  25. [25]
    Yeager, C. B.; Trolier-McKinstry, S. Epitaxial Pb(Zrx, Ti1-x)O3 (0.30 = x = 0.63) films on (100)MgO substrates for energy harvesting applications. J. Appl. Phys. 2012, 112, 074107.CrossRefGoogle Scholar
  26. [26]
    Budd, K. D.; Dey, S. Y.; Payne, D. A. Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br. Ceram. Proc. 1985, 36, 107–121.Google Scholar
  27. [27]
    Chen, S.-Y.; Chen, I.-W. Texture development, microstructure evolution, and crystallization of chemically derived PZT thin films. J. Am. Ceram. Soc. 2005, 81, 97–105.CrossRefGoogle Scholar
  28. [28]
    Kresse, G.; Furthmü ller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  29. [29]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  30. [30]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  31. [31]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  32. [32]
    Batirev, I. G.; Alavi, A.; Finnis, M. W. Equilibrium and adhesion of Nb/sapphire: The effect of oxygen partial pressure. Phys. Rev. B 2000, 62, 4698–4706.CrossRefGoogle Scholar
  33. [33]
    Liu, L. M.; Wang, S. Q.; Ye, H. Q. First-principles study of polar Al/TiN(111) interfaces. Acta Mater. 2004, 52, 3681–3688.CrossRefGoogle Scholar
  34. [34]
    Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 2005, 88, 2663–2676.CrossRefGoogle Scholar
  35. [35]
    Ibrahim, A.-B. M. A.; Murgan, R.; Abd Rahman, M. K.; Osman, J. Morphotropic phase boundary in ferroelectric materials. In Ferroelectrics -Physical Effects; Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011.Google Scholar
  36. [36]
    Takayama, R.; Tomita, Y. Preparation of epitaxial Pb(ZrxTi1-x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties. J. Appl. Phys. 1989, 65, 1666–1670.CrossRefGoogle Scholar
  37. [37]
    Adachi, M.; Matsuzaki, T.; Yamada, T.; Shiosaki, T.; Kawabata, A. Sputter-deposition of[111]-axis oriented rhombohedral PZT films and their dielectric, ferroelectric and pyroelectric properties. Jpn. J. Appl. Phys. 1987, 26, 550–553.CrossRefGoogle Scholar
  38. [38]
    Morimoto, K.; Kanno, I.; Wasa, K.; Kotera, H. Highefficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensor. Actuat. A Phys. 2010, 163, 428–432.CrossRefGoogle Scholar
  39. [39]
    Lotgering, F. K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 1959, 9, 113–123.CrossRefGoogle Scholar
  40. [40]
    Cao, L. Z.; Fu, W. Y.; Wang, S. F.; Wang, Q.; Sun, Z. H.; Yang, H.; Cheng, B. L.; Wang, H.; Zhou, Y. L. Effects of film thickness and preferred orientation on the dielectric properties of (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 films. J. Phys. D: Appl. Phys. 2007, 40, 2906–2910.CrossRefGoogle Scholar
  41. [41]
    Li, W. L.; Zhang, T. D.; Xu, D.; Hou, Y. F.; Cao, W. P.; Fei, W. D. LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1-x)BZT-xBCT thin films. J. Eur. Ceram. Soc. 2015, 35, 2041–2049.CrossRefGoogle Scholar
  42. [42]
    Zhang, Y.; Xue, D. Z.; Wu, H. J.; Ding, X. D.; Lookman, T.; Ren, X. B. Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases. Acta Mater. 2014, 71, 176–184.CrossRefGoogle Scholar
  43. [43]
    Souza Filho, A. G.; Lima, K. C. V.; Ayala, A. P.; Guedes, I.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Araújo, E. B.; Eiras, J. A. Raman scattering study of the PbZr1–xTixO3 system: Rhombohedral-monoclinic-tetragonal phase transitions. Phys. Rev. B 2002, 66, 132107.CrossRefGoogle Scholar
  44. [44]
    Camargo, E. R.; Frantti, J.; Kakihana, M. Low-temperature chemical synthesis of lead zirconate titanate (PZT) powders free from halides and organics. J. Mater. Chem. 2001, 11, 1875–1879.CrossRefGoogle Scholar
  45. [45]
    Kühnlein, T.; Stiegelschmitt, A.; Roosen, A.; Rauscher, M. Microstructure development of PZT ceramics by doping with small amounts of Al2O3, SiO2, and Fe2O3. J. Am. Ceram. Soc. 2014, 97, 1638–1644.CrossRefGoogle Scholar
  46. [46]
    Durruthy-Rodríguez, M. D.; Yáñez-Limón, J. M. Photoluminescence in doped PZT ferroelectric ceramic system. In Ferroelectrics -Physical Effects; Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011.Google Scholar
  47. [47]
    Cho, S. B.; Chung, Y. C. Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate. Carbon 2014, 77, 208–214.CrossRefGoogle Scholar
  48. [48]
    Cho, S. B.; Chung, Y.-C. Bandgap engineering of graphene by corrugation on lattice-mismatched MgO (111). J. Mater. Chem. C 2013, 1, 1595–1600.CrossRefGoogle Scholar
  49. [49]
    Cho, S. B.; Yun, K. H.; Yoo, D. S.; Ahn, K.; Chung, Y. C. Work function tuning of an ultrathin MgO film on an Ag substrate by generating oxygen impurities at the interface. Thin Solid Films 2013, 544, 541–544.CrossRefGoogle Scholar
  50. [50]
    Cho, S. B.; Lee, S.; Chung, Y.-C. Water trapping at the graphene/Al2O3 interface. Jpn. J. Appl. Phys. 2013, 52, 06GD09.Google Scholar
  51. [51]
    Jin, Y. M.; Wang, Y. U.; Khachaturyan, A. G.; Li, J. F.; Viehland, D. Conformal miniaturization of domains with low domain-wall energy: Monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 2003, 91, 197601.CrossRefGoogle Scholar
  52. [52]
    Chentir, M.-T.; Morioka, H.; Ehara, Y.; Saito, K.; Yokoyama, S.; Oikawa, T.; Funakubo, H. Changes of crystal structure and electrical properties with film thickness and Zr/(Zr+Ti) ratio for epitaxial Pb(Zr, Ti)O3 films grown on (100)cSrRuO3//(100)SrTiO3 substrates by metalorganic chemical vapor deposition. In Ferroelectrics-Characterization and Modeling. Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 229–244.Google Scholar
  53. [53]
    Boldyreva, K.; Pintilie, L.; Lotnyk, A.; Misirlioglu, I. B.; Alexe, M.; Hesse, D. Ferroelectric/antiferroelectric Pb(Zr0.8Ti0.2)O3/PbZrO3 epitaxial multilayers: Growth and thickness-dependent properties. Ferroelectrics 2008, 370, 140–146.CrossRefGoogle Scholar
  54. [54]
    Du, X. H.; Belegundu, U.; Uchino, K. Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: Theoretical expectation for thin films. Jpn. J. Appl. Phys. 1997, 36, 5580–5587.CrossRefGoogle Scholar
  55. [55]
    Kwok, C. K.; Desu, S. B. Ceramic Transactions: Ferroelectric Films (Volume 25); The American Ceramic Society: Westerville, OH,USA, 1992.Google Scholar
  56. [56]
    Kwok, C. K.; Desu, S. B. Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J. Mater. Res. 1993, 8, 339–344.CrossRefGoogle Scholar
  57. [57]
    Park, S.-E.; Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82, 1804–1811.CrossRefGoogle Scholar
  58. [58]
    Lee, H. N.; Nakhmanson, S. M.; Chisholm, M. F.; Christen, H. M.; Rabe, K. M.; Vanderbilt, D. Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys. Rev. Lett. 2007, 98, 217602.CrossRefGoogle Scholar
  59. [59]
    Khan, A. I.; Yu, P.; Trassin, M.; Lee, M. J.; You, L.; Salahuddin, S. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films. Appl. Phys. Lett. 2014, 105, 022903.CrossRefGoogle Scholar
  60. [60]
    Park, C.-S.; Lee, J.-W.; Park, G.-T.; Kim, H.-E.; Choi, J.-J. Microstructural evolution and piezoelectric properties of thick Pb(Zr, Ti)O3 films deposited by the multi-sputtering method: Part II.Piezoelectric properties. J. Mater. Res. 2007, 22, 1373–1377.CrossRefGoogle Scholar
  61. [61]
    Park, G. T.; Choi, J. J.; Ryu, J.; Fan, H. Q.; Kim, H. E. Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method. Appl. Phys. Lett. 2002, 80, 4606–4608.CrossRefGoogle Scholar
  62. [62]
    Jeong, C. K.; Kim, I.; Park, K.-I.; Oh, M. H.; Paik, H.; Hwang, G.-T.; No, K.; Nam, Y. S.; Lee, K. J. Virusdirected design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025.CrossRefGoogle Scholar
  63. [63]
    An, Y.-K.; Sohn, H. Visualization of non-propagating lamb wave modes for fatigue crack evaluation. J. Appl. Phys. 2015, 117, 114904.CrossRefGoogle Scholar
  64. [64]
    Kim, J.; Kim, K.; Sohn, H. In situ measurement of structural mass, stiffness, and damping using a reaction force actuator and a laser doppler vibrometer. Smart Mater. Struct. 2013, 22, 085004.CrossRefGoogle Scholar
  65. [65]
    Zhou, Z.; Tang, H. X.; Sodano, H. A. Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv. Mater. 2014, 26, 7547–7554.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chang Kyu Jeong
    • 1
    • 2
  • Sung Beom Cho
    • 3
  • Jae Hyun Han
    • 1
  • Dae Yong Park
    • 1
  • Suyoung Yang
    • 4
  • Kwi-Il Park
    • 5
  • Jungho Ryu
    • 6
  • Hoon Sohn
    • 4
  • Yong-Chae Chung
    • 3
  • Keon Jae Lee
    • 1
  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.KAIST Institute for the NanoCentury (KINC)DaejeonRepublic of Korea
  3. 3.Division of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  4. 4.Department of Civil and Environmental EngineeringKAISTDaejeonRepublic of Korea
  5. 5.Department of Energy EngineeringGyeongnam National University of Science and TechnologyGyeongnamRepublic of Korea
  6. 6.Functional Ceramic GroupKorea Institute of Materials Science (KIMS)GyeongnamRepublic of Korea

Personalised recommendations