Nano Research

, Volume 10, Issue 2, pp 426–436 | Cite as

Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries

  • Feng Wu
  • Ji Qian
  • Weiping Wu
  • Yusheng Ye
  • Zhiguo Sun
  • Bin Xu
  • Xiaoguang Yang
  • Yuhong Xu
  • Jiatao Zhang
  • Renjie Chen
Research Article

Abstract

In this study, a boron-doped microporous carbon (BMC)/sulfur nanocomposite is synthesized and applied as a novel cathode material for advanced Li-S batteries. The cell with this cathode exhibits an ultrahigh cycling stability and rate capability. After activation, a capacity of 749.5 mAh/g was obtained on the 54th cycle at a discharge current of 3.2 A/g. After 500 cycles, capacity of 561.8 mAh/g remained (74.96% retention), with only a very small average capacity decay of 0.056%. The excellent reversibility and stability of the novel sulfur cathode can be attributed to the ability of the boron-doped microporous carbon host to both physically confine polysulfides and chemically bind these species on the host surface. Theoretical calculations confirm that boron-doped carbon is capable of significantly stronger interactions with the polysulfide species than undoped carbon, most likely as a result of the lower electronegativity of boron. We believe that this doping strategy can be extended to other metal-air batteries and fuel cells, and that it has promising potential for many different applications.

Keywords

boron-doping microporous carbon binding energy Li-S batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1303_MOESM1_ESM.pdf (2.4 mb)
Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries

References

  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  3. [3]
    Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.CrossRefGoogle Scholar
  4. [4]
    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.CrossRefGoogle Scholar
  5. [5]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  6. [6]
    Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.CrossRefGoogle Scholar
  7. [7]
    Zhou, G. M.; Wang, D.-W.; Li, F.; Hou, P.-X.; Yin, L. C.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H.-M. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.CrossRefGoogle Scholar
  8. [8]
    Sun, L.; Li, M. Y.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. Nano Lett. 2014, 14, 4044–4049.CrossRefGoogle Scholar
  9. [9]
    Xu, G. Y.; Yuan, J. R.; Tao, X. Y.; Ding, B.; Dou, H.; Yan, X. H.; Xiao, Y.; Zhang, X. G. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 2015, 8, 3066–3074.CrossRefGoogle Scholar
  10. [10]
    Wu, F.; Qian, J.; Chen, R. J.; Zhao, T.; Xu, R.; Ye, Y. S.; Li, W. H.; Li, L.; Lu, J.; Amine, K. Sulfur cathode based on layered carbon matrix for high-performance Li–S batteries. Nano Energy 2015, 12, 742–749.CrossRefGoogle Scholar
  11. [11]
    Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.CrossRefGoogle Scholar
  12. [12]
    Qiu, Y. C.; Li, W. F.; Li, G. Z.; Hou, Y.; Zhou, L. S.; Li, H. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Polyaniline-modified cetyltrimethylammonium bromidegraphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries. Nano Res. 2014, 7, 1355–1363.CrossRefGoogle Scholar
  13. [13]
    Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X. F.; Qiu, Y. C.; Yang, S. H. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 2012, 5, 726–738.CrossRefGoogle Scholar
  14. [14]
    Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.CrossRefGoogle Scholar
  15. [15]
    Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Zhang, X. G. Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithiumsulfur batteries. Chem.—Eur. J. 2013, 19, 1013–1019.CrossRefGoogle Scholar
  16. [16]
    Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.CrossRefGoogle Scholar
  17. [17]
    Ahn, W.; Kim, K.-B.; Jung, K.-N.; Shin, K.-H.; Jin, C.-S. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J. Power Sources 2012, 202, 394–399.CrossRefGoogle Scholar
  18. [18]
    Chen, J. J.; Zhang, Q.; Shi, Y. N.; Qin, L. L.; Cao, Y.; Zheng, M. S.; Dong, Q. F. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Phys. Chem. Chem. Phys. 2012, 14, 5376–5382.CrossRefGoogle Scholar
  19. [19]
    Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201–1204.CrossRefGoogle Scholar
  20. [20]
    Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metalfree electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.Google Scholar
  21. [21]
    Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183.CrossRefGoogle Scholar
  22. [22]
    Wu, F.; Qian, J.; Chen, R.; Lu, J.; Li, L.; Wu, H.; Chen, J.; Zhao, T.; Ye, Y.; Amine, K. An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Appl. Mater. Interfaces 2014, 6, 15542–15549.CrossRefGoogle Scholar
  23. [23]
    Chen, R. J.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J. Z.; Tan, G. Q.; Ye, Y. S.; Amine, K. Graphene-based threedimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 2013, 13, 4642–4649.CrossRefGoogle Scholar
  24. [24]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  25. [25]
    Katagiri, G.; Ishida, H.; Ishitani, A. Raman spectra of graphite edge planes. Carbon 1988, 26, 565–571.CrossRefGoogle Scholar
  26. [26]
    Ward, A. T. Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures. J. Phys. Chem. 1968, 72, 4133–4139.CrossRefGoogle Scholar
  27. [27]
    Moulder, J. F.; Chastain, J.; King, R. C. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN,USA, 1992.Google Scholar
  28. [28]
    Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boronand nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.Google Scholar
  29. [29]
    Ennaceur, M. M.; Terreault, B. XPS study of the process of oxygen gettering by thin films of PACVD boron. J. Nucl. Mater. 2000, 280, 33–38.Google Scholar
  30. [30]
    Akridge, J. R.; Mikhaylik, Y. V.; White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 2004, 175, 243–245.CrossRefGoogle Scholar
  31. [31]
    Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344–348.CrossRefGoogle Scholar
  32. [32]
    Koh, J. Y.; Park, M. S.; Kim, E. H.; Kim, T. J.; Kim, S.; Kim, K. J.; Kim, Y. J.; Jung, Y. Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium-sulfur cells. J. Electrochem. Soc. 2014, 161, A2117–A2120.CrossRefGoogle Scholar
  33. [33]
    Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Feng Wu
    • 1
    • 2
  • Ji Qian
    • 1
  • Weiping Wu
    • 3
  • Yusheng Ye
    • 1
  • Zhiguo Sun
    • 1
  • Bin Xu
    • 4
  • Xiaoguang Yang
    • 5
  • Yuhong Xu
    • 6
  • Jiatao Zhang
    • 7
  • Renjie Chen
    • 1
    • 2
  1. 1.Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Collaborative Innovation Center of Electric Vehicles in BeijingBeijingChina
  3. 3.School of Computer Science, Mathematics and Engineering, CityUniversity of LondonLondonUK
  4. 4.State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingChina
  5. 5.Research and Advanced EngineeringFord Motor CompanyDearbornUSA
  6. 6.Electrified Powertrain EngineeringFord Motor Research and Engineering (Nanjing) Co., Ltd.NanjingChina
  7. 7.Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Material Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations