Advertisement

Nano Research

, Volume 10, Issue 2, pp 364–380 | Cite as

Thermally stable Ir/Ce0.9La0.1O2 catalyst for high temperature methane dry reforming reaction

  • Fagen WangEmail author
  • Leilei Xu
  • Weidong Shi
  • Jian Zhang
  • Kai Wu
  • Yu Zhao
  • Hui Li
  • He Xing Li
  • Guo Qin XuEmail author
  • Wei ChenEmail author
Research Article

Abstract

In this study, the use of a thermally stable Ir/Ce0.9La0.1O2 catalyst was investigated for the dry reforming of methane. The doping of La2O3 into the CeO2 lattice enhanced the chemical and physical properties of the Ir/Ce0.9La0.1O2 catalyst, such as redox properties, Ir dispersion, oxygen storage capacity, and thermal stability, with respect to the Ir/CeO2 catalyst. Hence, the Ir/Ce0.9La0.1O2 catalyst exhibits higher activity and stabler performance for the dry reforming of methane than the Ir/CeO2 catalyst. This observation can be mainly attributed to the stronger interaction between the metal and support in the Ir/Ce0.9La0.1O2 catalyst stabilizing the catalyst structure and improving the oxygen storage capacity, leading to negligible aggregation of Ir nanoparticles and the Ce0.9La0.1O2 support at high temperatures, as well as the rapid removal of carbon deposits at the boundaries between the Ir metal and the Ce0.9La0.1O2 support.

Keywords

thermally stable catalyst Ir/Ce0.9La0.1O2 metal–support interaction methane dry reforming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial supports from National Natural Science Foundation of China (Nos. 21503142 and 21503113), Singapore National Research Foundation CREATE-SPURc program (No. R-143-001- 205-592), Singapore MOE Tier II (No. R143-000-542-112), and Academia-Industry Collaborative Innovation Foundation from Jiangsu Science and Technology Department (No. BY2014139).

Supplementary material

12274_2016_1296_MOESM1_ESM.pdf (522 kb)
Thermally stable Ir/Ce0.9La0.1O2 catalyst for high temperature methane dry reforming reaction

References

  1. [1]
    Song, C. S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32.CrossRefGoogle Scholar
  2. [2]
    Satthawong, R.; Koizumi, N.; Song, C. S.; Prasassarakich, P. Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. J. CO2 Util. 2013, 3–4, 102–106.CrossRefGoogle Scholar
  3. [3]
    Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837.CrossRefGoogle Scholar
  4. [4]
    Olajire, A. A. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. J. CO2 Util. 2013, 3–4, 74–92.CrossRefGoogle Scholar
  5. [5]
    Xie, T.; Zhao, X. Y.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide. Int. J. Hydrogen Energy 2015, 40, 9685–9695.CrossRefGoogle Scholar
  6. [6]
    Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068.CrossRefGoogle Scholar
  7. [7]
    Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529–541.CrossRefGoogle Scholar
  8. [8]
    Du, X. J.; Zhang, D. S.; Gao, R. H.; Huang, L.; Shi, L. Y.; Zhang, J. P. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chem. Commun. 2013, 49, 6770–6772.CrossRefGoogle Scholar
  9. [9]
    Pechimuthu, N. A.; Pant, K. K.; Dhingra, S. C. Deactivation studies over Ni-K/CeO2-Al2O3 catalyst for dry reforming of methane. Ind. Eng. Chem. Res. 2007, 46, 1731–1736.CrossRefGoogle Scholar
  10. [10]
    Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Properties of yolk–shell structured Ni@SiO2 nanocatalyst and its catalytic performance in carbon dioxide reforming of methane to syngas. Catal. Today 2016, 259, 438–445.CrossRefGoogle Scholar
  11. [11]
    Xie, T.; Shi, L. Y.; Zhang, J. P.; Zhang, D. S. Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking-and sinteringresistant dry reforming of methane. Chem. Commun. 2014, 50, 7250–7253.CrossRefGoogle Scholar
  12. [12]
    Zhao, X. Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Design and synthesis of NiCe@m-SiO2 yolk–shell framework catalysts with improved coke-and sintering-resistance in dry reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2447–2456.CrossRefGoogle Scholar
  13. [13]
    Du, X. J.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Zhang, J. P. Coke-and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane. Nanoscale 2013, 5, 2659–2663.CrossRefGoogle Scholar
  14. [14]
    Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039.CrossRefGoogle Scholar
  15. [15]
    Bobrova, L. N.; Bobin, A. S.; Mezentseva, N. V.; Sadykov, V. A.; Thybaut, J. W.; Marin, G. B. Kinetic assessment of dry reforming of methane on Pt + Ni containing composite of fluorite-like structure. Appl. Catal. B: Environ. 2016, 182, 513–524.CrossRefGoogle Scholar
  16. [16]
    Mark, M. F.; Maier, W. F. CO2-reforming of methane on supported Rh and Ir catalysts. J. Catal. 1996, 164, 122–130.CrossRefGoogle Scholar
  17. [17]
    Souza, M. M. V. M.; Aranda, D. A. G.; Schmal, M. Reforming of methane withe carbon dioxide over Pt/ZrO2/Al2O3 catalysts. J. Catal. 2001, 204, 498–511.CrossRefGoogle Scholar
  18. [18]
    Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 1991, 352, 225–226.CrossRefGoogle Scholar
  19. [19]
    Li, W. Z.; Kovarik, L.; Mei, D. H.; Liu, J.; Wang, Y.; Peden, C. H. F. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Commun. 2013, 4, 2481.Google Scholar
  20. [20]
    Adijanto, L.; Bennett, D. A.; Chen, C.; Yu, A. S.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Vohs, J. M. Exceptional thermal stability of Pd@CeO2 core–shell catalyst nanostructures grafted onto an oxide surface. Nano Lett. 2013, 13, 2252–2257.CrossRefGoogle Scholar
  21. [21]
    Wang, F. G.; Xu, L. L.; Zhang, J.; Zhao, Y.; Li, H.; Li, H. X.; Wu, K.; Xu, G. Q.; Chen, W. Tuning the metal–support interaction in catalysts for highly efficient methane dry reforming reaction. Appl. Catal. B: Environ. 2016, 180, 511–520.CrossRefGoogle Scholar
  22. [22]
    Singh, S.; Zubenko, D.; Rosen, B. A. Influence of LaNiO3 shape on its solid-phase crystallization into coke-free reforming catalysts. ACS Catal. 2016, 6, 4199–4205.CrossRefGoogle Scholar
  23. [23]
    Farmer, J. A.; Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal–support bonding. Science 2010, 329, 933–936.CrossRefGoogle Scholar
  24. [24]
    Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.CrossRefGoogle Scholar
  25. [25]
    Masias, K. L. S.; Peck, T. C.; Fanson, P. T. Thermally robust core–shell material for automotive 3-way catalysis having oxygen storage capacity. RSC Adv. 2015, 5, 48851–48855.CrossRefGoogle Scholar
  26. [26]
    Bedrane, S.; Descorme, C.; Duprez, D. Investigation of the oxygen storage process on ceria-and ceria–zirconiasupported catalysts. Catal. Today 2002, 75, 401–405.CrossRefGoogle Scholar
  27. [27]
    Cai, W. J.; Wang, F. G.; Daniel, C.; van Veen, A. C.; Schuurman, Y.; Descorme, C.; Provendier, H.; Shen, W. J.; Mirodatos, C. Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: A structure sensitivity analysis. J. Catal. 2012, 286, 137–152.CrossRefGoogle Scholar
  28. [28]
    Postole, G.; Nguyen, T.-S.; Aouine, M.; Gélin, P.; Cardenas, L.; Piccolo, L. Efficient hydrogen production from methane over iridium-doped ceria catalysts synthesized by solution combustion. Appl. Catal. B: Environ. 2015, 166–167, 580–591.CrossRefGoogle Scholar
  29. [29]
    Matei-Rutkovska, F.; Postole, G.; Rotaru, C. G.; Florea, M.; Pârvulescu, V. I.; Gelin, P. Synthesis of ceria nanopowders by microwave-assisted hydrothermal method for dry reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2512–2525.CrossRefGoogle Scholar
  30. [30]
    Laosiripojana, N.; Assabumrungrat, S. Catalytic dry reforming of methane over high surface area ceria. Appl. Catal. B: Environ. 2005, 60, 107–116.CrossRefGoogle Scholar
  31. [31]
    Wang, F. G.; Cai, W. J.; Tana; Provendier, H.; Schuurman, Y.; Descorme, C.; Mirodatos, C.; Shen, W. J. Ageing analysis of a model Ir/CeO2 catalyst in ethanol steam reforming. Appl. Catal. B: Environ. 2012, 125, 546–555.CrossRefGoogle Scholar
  32. [32]
    Odedairo, T.; Chen, J. L.; Zhu, Z. H. Metal-support interface of a novel Ni-CeO2 catalyst for dry reforming of methane. Catal. Commun. 2013, 31, 25–31.CrossRefGoogle Scholar
  33. [33]
    Du, X. J.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Zhang, J. P. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J. Phys. Chem. C 2012, 116, 10009–10016.CrossRefGoogle Scholar
  34. [34]
    Hou, T. F.; Yu, B.; Zhang, S. Y.; Zhang, J. H.; Wang, D. Z.; Xu, T. K.; Cui, L.; Cai, W. J. Hydrogen production from propane steam reforming over Ir/Ce0.75Zr0.25O2 catalyst. Appl. Catal. B: Environ. 2015, 168–169, 524–530.CrossRefGoogle Scholar
  35. [35]
    Wisniewski, M.; Boréave, A.; Gélin, P. Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2-x. Catal. Commun. 2005, 6, 596–600.CrossRefGoogle Scholar
  36. [36]
    Petallidou, K. C.; Efstathiou, A. M. Low-temperature watergas shift on Pt/Ce1-xLaxO2-d: Effect of Ce/La ratio. Appl. Catal. B: Environ. 2013, 140–141, 333–347.CrossRefGoogle Scholar
  37. [37]
    Wang, F. G.; Xu, L. L.; Yang, J.; Zhang, J.; Zhang, L. Z.; Li, H.; Zhao, Y.; Li, H. X.; Wu, K.; Xu, G. Q. et al. Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catal. Today, in press, DOI: 10.1016/j.cattod.2016.03.055.Google Scholar
  38. [38]
    Mears, D. E. Tests for transport limitations in experimental catalytic reactors. Ind. Eng. Chem. Process Des. Develop. 1971, 10, 541–547.CrossRefGoogle Scholar
  39. [39]
    Oyama, S. T.; Zhang, X. M.; Lu, J. Q.; Gu, Y. F.; Fujitani, T. Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor. J. Catal. 2008, 257, 1–4.CrossRefGoogle Scholar
  40. [40]
    He, H.; Dai, H. X.; Au, C. T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 2004, 90, 245–254.CrossRefGoogle Scholar
  41. [41]
    Huang, M.; Fabris, S. Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations. Phys. Rev. B 2007, 75, 081404.CrossRefGoogle Scholar
  42. [42]
    Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 2005, 127, 3286–3287.CrossRefGoogle Scholar
  43. [43]
    Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996, 38, 439–520.CrossRefGoogle Scholar
  44. [44]
    Reddy, B. M.; Thrimurthulu, G.; Katta, L.; Yamada, Y.; Park, S. E. Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions. J. Phys. Chem. C 2009, 113, 15882–15890.CrossRefGoogle Scholar
  45. [45]
    Wang, F. G.; Cai, W. J.; Provendier, H.; Schuurman, Y.; Descorme, C.; Mirodatos, C.; Shen, W. J. Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. Int. J. Hydrogen Energy 2011, 36, 13566–13574.CrossRefGoogle Scholar
  46. [46]
    Larachi, F.; Pierre, J.; Adnot, A.; Bernis, A. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts. Appl. Surf. Sci. 2002, 195, 236–250.CrossRefGoogle Scholar
  47. [47]
    Jia, T. K.; Wang, W. M.; Long, F.; Fu, Z. Y.; Wang, H.; Zhang, Q. J. Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. J. Alloy Compd. 2009, 484, 410–415.CrossRefGoogle Scholar
  48. [48]
    Luo, M. F.; Zhong, Y. J.; Zhu, B.; Yuan, X. X.; Zheng, X. M. Temperature-programmed desorption study of NO and CO2 over CeO2 and ZrO2. Appl. Surf. Sci. 1997, 115, 185–189.CrossRefGoogle Scholar
  49. [49]
    Appel, L. G.; Eon, J. G.; Schmal, M. The CO2–CeO2 interaction and its role in the CeO2 reactivity. Catal. Lett. 1998, 56, 199–202.CrossRefGoogle Scholar
  50. [50]
    Aneggi, E.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Promotion effect of surface lanthanum in soot oxidation over ceria-based catalysts. Top Catal. 2007, 42, 319–322.CrossRefGoogle Scholar
  51. [51]
    Li, K. Z.; Wang, H.; Wei, Y. G. Syngas generation from methane using a chemical-looping concept: A review of oxygen carriers. J. Chem. 2013, 2013, 294817.Google Scholar
  52. [52]
    Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal. 1998, 175, 152–160.CrossRefGoogle Scholar
  53. [53]
    Wei, J. M.; Iglesia, E. Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts. Phys. Chem. Chem. Phys. 2004, 6, 3754–3759.CrossRefGoogle Scholar
  54. [54]
    Wei, J. M.; Iglesia, E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J. Phys. Chem. B 2004, 108, 4094–4103.CrossRefGoogle Scholar
  55. [55]
    Pakhare, D.; Schwartz, V.; Abdelsayed, V.; Haynes, D.; Shekhawat, D.; Poston, J.; Spivey, J. Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J. Catal. 2014, 316, 78–92.CrossRefGoogle Scholar
  56. [56]
    Múnera, J. F.; Cornaglia, L. M.; Cesar, D. V.; Schmal, M.; Lombardo, E. A. Kinetic studies of the dry reforming of methane over the Rh/La2O3-SiO2 catalyst. Ind. Eng. Chem. Res. 2007, 46, 7543–7549.CrossRefGoogle Scholar
  57. [57]
    Solymosi, F.; Kutsán, G.; Erdöhelyi, A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catal. Lett. 1991, 11, 149–156.CrossRefGoogle Scholar
  58. [58]
    Xu, L. L.; Zhang, J.; Wang, F. G.; Yuan, K. D.; Wang, L. J.; Wu, K.; Xu, G. Q.; Chen, W. One-step synthesis of ordered mesoporous CoAl2O4 spinel-based metal oxides for CO2 reforming of CH4. RSC Adv. 2015, 5, 48256–48268.CrossRefGoogle Scholar
  59. [59]
    Wang, R.; Liu, X. B.; Chen, Y. X.; Li, W. Z.; Xu, H. Y. Effect of metal-support interaction on coking resistance of Rh-based catalysts in CH4/CO2 reforming. Chin. J. Catal. 2007, 28, 865–869.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Energy and Environment Interface EngineeringNational University of Singapore Suzhou Research InstituteSuzhouChina
  2. 2.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangChina
  3. 3.School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment TechnologyNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Department of ChemistryNational University of SingaporeSingaporeSingapore
  5. 5.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  6. 6.Department of ChemistryShanghai Normal UniversityShanghaiChina
  7. 7.Singapore-Peking University Research Center for a Sustainable Low-Carbon FutureSingaporeSingapore

Personalised recommendations