Nano Research

, Volume 10, Issue 1, pp 145–156 | Cite as

Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition

  • Jie Wang
  • Haijing Shen
  • Chi Huang
  • Qinqin Ma
  • Yaning Tan
  • Fenglei Jiang
  • Chao Ma
  • Quan Yuan
Research Article


Adsorbents are widely employed in both fundamental and applied research areas such as separation technology, biotechnology, and environmental science. Selectivity and reusability are two most important requirements for adsorbents. Aptamers exhibit perfect selectivity and easy regeneration, which make them uniquely effective adsorption materials. Herein, we have rationally designed novel aptamer-based adsorbents and investigated their performance in extraction/separation of targets from an aqueous solution. These adsorbents can selectively extract targets from complicated sample matrices containing background compounds. Moreover, they can also be easily recycled without a significant loss of adsorption capacity. Notably, the adsorbents did not affect the activity of isolated biological samples, revealing their potential for the purification/separation of biomolecules. Composite adsorbents were constructed using aptamer-based adsorbents and a porous polymer, displaying highly efficient target separation from aqueous solution. Finally, separation columns were constructed, and targets in the aqueous solution were efficiently separated by these columns. The aptamerbased adsorbents described here exhibit great promise for potential applications in separation technology, biotechnology, and environment-related areas.


aptamer adsorbent selectivity separation extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51272186 and 21422105), “A Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China” (No. 201220), and Ten Thousand Talents Program for Young Talents. Q. Y. thanks for large-scale instrument and equipment sharing foundation of Wuhan University.

Supplementary material

12274_2016_1273_MOESM1_ESM.pdf (5.6 mb)
Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition


  1. [1]
    Augusto, F.; Carasek, E.; Silva, R. G. C.; Rivellino, S. R.; Batista, A. D.; Martendal, E. New sorbents for extraction and microextraction techniques. J. Chromatogr. A 2010, 1217, 2533–2542.CrossRefGoogle Scholar
  2. [2]
    Dabrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224.CrossRefGoogle Scholar
  3. [3]
    Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.CrossRefGoogle Scholar
  4. [4]
    Crane, R. A.; Dickinson, M.; Popescu, I. C.; Scott, T. B. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res. 2011, 45, 2931–2942.CrossRefGoogle Scholar
  5. [5]
    Lukens, W. W.; Schmidt-Winkel, P.; Zhao, D. Y.; Feng, J. L.; Stucky, G. D. Evaluating pore sizes in mesoporous materials: A simplified standard adsorption method and a simplified broekhoff-de Boer method. Langmuir 1999, 15, 5403–5409.CrossRefGoogle Scholar
  6. [6]
    Liu, B. W.; Liu, J. W. DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem. Commun. 2014, 50, 8568–8570.CrossRefGoogle Scholar
  7. [7]
    Huang, D. N.; Deng, C. H.; Zhang, X. M. Functionalized magnetic nanomaterials as solid-phase extraction adsorbents for organic pollutants in environmental analysis. Anal. Methods 2014, 6, 7130–7141.CrossRefGoogle Scholar
  8. [8]
    Borlido, L.; Azevedo, A. M.; Roque, A. C. A.; Aires-Barros, M. R. Magnetic separations in biotechnology. Biotechnol. Adv. 2013, 31, 1374–1385.CrossRefGoogle Scholar
  9. [9]
    Teng, W.; Wu, Z. X.; Fan, J. W.; Chen, H.; Feng, D.; Lv, Y. Y.; Wang, J. X.; Asiri, A. M.; Zhao, D. Y. Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin-LR. Energy Environ. Sci. 2013, 6, 2765–2776.CrossRefGoogle Scholar
  10. [10]
    Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014, 292, 2025–2052.CrossRefGoogle Scholar
  11. [11]
    Qu, X. L.; Alvarez, P. J. J.; Li, Q. L. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946.CrossRefGoogle Scholar
  12. [12]
    Soto, M. L.; Moure, A.; Domínguez, H.; Parajó, J. C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 2011, 105, 1–27.CrossRefGoogle Scholar
  13. [13]
    Wu, Z. X.; Li, W.; Webley, P. A.; Zhao, D. Y. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv. Mater. 2012, 24, 485–491.CrossRefGoogle Scholar
  14. [14]
    Wang, J.; Shen, H. J.; Hu, X. X.; Li, Y.; Li, Z. H.; Xu, J. F.; Song, X. F.; Zeng, H. B.; Yuan, Q. A targeted “capture” and “removal” scavenger toward multiple pollutants for water remediation based on molecular recognition. Adv. Sci. 2016, 3, 1500289.CrossRefGoogle Scholar
  15. [15]
    Wang, P.; Shi, Q. H.; Liang, H. J.; Steuerman, D. W.; Stucky, G. D.; Keller, A. A. Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small 2008, 4, 2166–2170.CrossRefGoogle Scholar
  16. [16]
    Huang, P. J. J.; Liu, J. W. Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. Chem.—Eur. J. 2011, 17, 5004–5010.CrossRefGoogle Scholar
  17. [17]
    Yokoi, T.; Kubota, Y.; Tatsumi, T. Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A: Gen. 2012, 421–422, 14–37.CrossRefGoogle Scholar
  18. [18]
    Xie, L. J.; Jiang, R. F.; Zhu, F.; Liu, H.; Ouyang, G. F. Application of functionalized magnetic nanoparticles in sample preparation. Anal. Bioanal. Chem. 2014, 406, 377–399.CrossRefGoogle Scholar
  19. [19]
    Bunka, D. H. J.; Stockley, P. G. Aptamers come of age—At last. Nat. Rev. Microbiol. 2006, 4, 588–596.CrossRefGoogle Scholar
  20. [20]
    Liu, J. W.; Cao, Z. H.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998.CrossRefGoogle Scholar
  21. [21]
    Tan, W. H.; Donovan, M. J.; Jiang, J. H. Aptamers from cellbased selection for bioanalytical applications. Chem. Rev. 2013, 113, 2842–2862.CrossRefGoogle Scholar
  22. [22]
    Pei, H.; Zuo, X.; Zhu, D.; Huang, Q.; Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 2014, 47, 550–559.CrossRefGoogle Scholar
  23. [23]
    Fang, X. H.; Tan, W. H. Aptamers generated from Cell- SELEX for molecular medicine: A chemical biology approach. Acc. Chem. Res. 2010, 43, 48–57.CrossRefGoogle Scholar
  24. [24]
    Hamula, C. L. A.; Guthrie, J. W.; Zhang, H. Q.; Li, X. F.; Le, X. C. Selection and analytical applications of aptamers. TrAC Trend. Anal. Chem. 2006, 25, 681–691.CrossRefGoogle Scholar
  25. [25]
    Giljohann, D. A.; Mirkin, C. A. Drivers of biodiagnostic development. Nature 2009, 462, 461–464.CrossRefGoogle Scholar
  26. [26]
    Hamula, C. L. A.; Zhang, H. Q.; Guan, L. L.; Li, X. F.; Le, X. C. Selection of aptamers against live bacterial cells. Anal. Chem. 2008, 80, 7812–7819.CrossRefGoogle Scholar
  27. [27]
    Liu, Q. L.; Jin, C.; Wang, Y. Y.; Fang, X. H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater. 2014, 6, e95.CrossRefGoogle Scholar
  28. [28]
    Song, S. P.; Wang, L. H.; Li, J.; Fan, C. H.; Zhao, J. L. Aptamer-based biosensors. TrAC Trend. Anal. Chem. 2008, 27, 108–117.CrossRefGoogle Scholar
  29. [29]
    Jayasena, S. D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650.Google Scholar
  30. [30]
    Guo, W.; Hong, F.; Liu, N. N.; Huang, J. Y.; Wang, B. Y.; Duan, R. X.; Lou, X. D.; Xia, F. Target-specific 3D DNA gatekeepers for biomimetic nanopores. Adv. Mater. 2015, 27, 2090–2095.CrossRefGoogle Scholar
  31. [31]
    Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 2009, 9, 3258–3261.CrossRefGoogle Scholar
  32. [32]
    Mairal, T.; Özalp, V. C.; Sánchez, P. L.; Mir, M.; Katakis, I.; O’Sullivan, C. K. Aptamers: Molecular tools for analytical applications. Anal. Bioanal. Chem. 2008, 390, 989–1007.CrossRefGoogle Scholar
  33. [33]
    Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434.CrossRefGoogle Scholar
  34. [34]
    Liang, H.; Zhang, X. B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNAcontaining nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014, 47, 1891–1901.CrossRefGoogle Scholar
  35. [35]
    Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 2007, 24, 191–200.CrossRefGoogle Scholar
  36. [36]
    Palchetti, I.; Mascini, M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008, 133, 846–854.CrossRefGoogle Scholar
  37. [37]
    Huang, P. J.; Liu, J. W. Flow cytometry-assisted detection of adenosine in serum with an immobilized aptamer sensor. Anal. Chem. 2010, 82, 4020–4026.CrossRefGoogle Scholar
  38. [38]
    Zhao, Q.; Li, X. F.; Le, X. C. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal. Chem. 2008, 80, 3915–3920.CrossRefGoogle Scholar
  39. [39]
    Wang, J.; Wei, Y. R.; Hu, X. X.; Fang, Y. Y.; Li, X. Y.; Liu, J.; Wang, S. F.; Yuan, Q. Protein activity regulation: Inhibition by closed-loop aptamer-based structures and restoration by near-IR stimulation. J. Am. Chem. Soc. 2015, 137, 10576–10584.CrossRefGoogle Scholar
  40. [40]
    Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.CrossRefGoogle Scholar
  41. [41]
    Yuan, Y.; Chen, S.; Paunesku, T.; Gleber, S. C.; Liu, W. C.; Doty, C. B.; Mak, R.; Deng, J. J.; Jin, Q. L.; Lai, B. et al. Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells. ACS Nano 2013, 7, 10502–10517.CrossRefGoogle Scholar
  42. [42]
    Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamerguided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965–13969.CrossRefGoogle Scholar
  43. [43]
    Dave, N.; Chan, M. Y.; Huang, P. J. J.; Smith, B. D.; Liu, J. W. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J. Am. Chem. Soc. 2010, 132, 12668–12673.CrossRefGoogle Scholar
  44. [44]
    Jo, M.; Ahn, J. Y.; Lee, J.; Lee, S.; Hong, S. W.; Yoo, J. W.; Kang, J.; Dua, P. Lee, D. K.; Hong, S. et al. Development of single-stranded DNA aptamers for specific bisphenol a detection. Oligonucleotides 2011, 21, 85–91.CrossRefGoogle Scholar
  45. [45]
    Chang, Y. C.; Yang, C. Y.; Sun, R. L.; Cheng, Y. F.; Kao, W. C.; Yang, P. C. Rapid single cell detection of staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 2013, 3, 1863.Google Scholar
  46. [46]
    Song, H.; Nor, Y. A.; Yu, M. H.; Yang, Y. N.; Zhang, J.; Zhang, H. W.; Xu, C.; Mitter, N.; Yu, C. Z. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455–6462.CrossRefGoogle Scholar
  47. [47]
    Zhu, M.; Zhu, Y. F.; Zhang, L. X.; Shi, J. L. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci. Technol. Adv. Mat. 2013, 14, 045005.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jie Wang
    • 1
  • Haijing Shen
    • 1
  • Chi Huang
    • 1
  • Qinqin Ma
    • 1
  • Yaning Tan
    • 1
  • Fenglei Jiang
    • 1
  • Chao Ma
    • 2
  • Quan Yuan
    • 1
  1. 1.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations