Nano Research

, Volume 10, Issue 1, pp 97–107 | Cite as

Design of active and stable oxygen reduction reaction catalysts by embedding CoxOy nanoparticles into nitrogen-doped carbon

  • Fan Yang
  • Mikel Abadia
  • Chaoqiu Chen
  • Weike Wang
  • Le Li
  • Lianbing Zhang
  • Celia Rogero
  • Andrey Chuvilin
  • Mato Knez
Research Article

Abstract

The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some cost-efficient transition metal oxides have exhibited excellent ORR reactivity, but the stability and durability of such alternative catalyst materials pose serious challenges. Here, we present a facile method to fabricate uniform CoxOy nanoparticles and embed them into N-doped carbon, which results in a composite of extraordinary stability and durability, while maintaining its high reactivity. The half-wave potential shows a negative shift of only 21 mV after 10,000 cycles, only one third of that observed for Pt/C (63 mV). Furthermore, after 100,000 s testing at a constant potential, the current decreases by only 17%, significantly less than for Pt/C (35%). The exceptional stability and durability results from the system architecture, which comprises a thin carbon shell that prevents agglomeration of the CoxOy nanoparticles and their detaching from the substrate.

Keywords

atomic layer deposition cobalt oxide polydopamine oxygen reduction reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1269_MOESM1_ESM.pdf (3.3 mb)
Design of active and stable oxygen reduction reaction catalysts by embedding CoxOy nanoparticles into nitrogen-doped carbon

References

  1. [1]
    Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.CrossRefGoogle Scholar
  2. [2]
    Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. Recent progress in nanostructured electrocatalysts for PEM fuel cells. J. Mater. Chem. A 2013, 1, 4631–4641.CrossRefGoogle Scholar
  3. [3]
    Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.CrossRefGoogle Scholar
  4. [4]
    Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.CrossRefGoogle Scholar
  5. [5]
    Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.CrossRefGoogle Scholar
  6. [6]
    Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.CrossRefGoogle Scholar
  7. [7]
    Zhou, X. J.; Qiao, J. L.; Yang, L.; Zhang, J. J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.CrossRefGoogle Scholar
  8. [8]
    Wang, D.-W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.CrossRefGoogle Scholar
  9. [9]
    Yao, Y. F.; You, Y.; Zhang, G. X.; Liu, J. G.; Sun, H. R.; Zou, Z. G.; Sun, S. H. Highly functional bioinspired Fe/N/C oxygen reduction reaction catalysts: Structure-regulating oxygen sorption. ACS Appl. Mater. Interfaces 2016, 8, 6464–6471.CrossRefGoogle Scholar
  10. [10]
    Zhang, J. L.; Chen, G. L.; Zhang, Q.; Kang, F.; You, B. Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 12760–12766.CrossRefGoogle Scholar
  11. [11]
    Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mullen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRefGoogle Scholar
  12. [12]
    Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.CrossRefGoogle Scholar
  13. [13]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  14. [14]
    Ren, G. Y.; Li, Y.; Guo, Z. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M.; Jiang, L. A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in onestep ball milling, Nano Res. 2015, 8, 3461–3471.Google Scholar
  15. [15]
    Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.CrossRefGoogle Scholar
  16. [16]
    Gao, R.; Li, Z. Y.; Zhang, X. L.; Zhang, J. C.; Hu, Z. B.; Liu, X. F. Carbon-dotted defective CoO with oxygen vacancies: A synergetic design of bifunctional cathode catalyst for Li–O2 batteries. ACS Catal. 2016, 6, 400–406.CrossRefGoogle Scholar
  17. [17]
    Zhang, X. L.; Gao, R.; Li, Z. Y.; Hu, Z. B.; Liu, H. Y.; Liu, X. F. Enhancing the performance of CoO as cathode catalyst for Li-O2 batteries through confinement into bimodal mesoporous carbon. Electrochim. Acta. 2016, 201, 134–141.CrossRefGoogle Scholar
  18. [18]
    Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.CrossRefGoogle Scholar
  19. [19]
    Monzon, L. M. A.; Rode, K.; Venkatesan, M.; Coey, J. M. D. Electrosynthesis of iron, cobalt, and zinc microcrystals and magnetic enhancement of the oxygen reduction reaction. Chem. Mater. 2012, 24, 3878–3885.CrossRefGoogle Scholar
  20. [20]
    Zhang, T. R.; Cheng, F. Y.; Du, J.; Hu, Y. X.; Chen, J. Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation. Adv. Energy Mater. 2015, 5, 1400654.CrossRefGoogle Scholar
  21. [21]
    Sun, M.; Dong, Y. Z.; Zhang, G.; Qu, J. H.; Li, J. H. a-Fe2O3 spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 13635–13640.CrossRefGoogle Scholar
  22. [22]
    Zhang, G. Q.; Xia, B. Y.; Wang, X.; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheets as a methanoltolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408–2412.CrossRefGoogle Scholar
  23. [23]
    Lv, L.-B.; Ye, T.-N.; Gong, L.-H.; Wang, K.-X.; Su, J.; Li, X.-H.; Chen, J.-S. Anchoring cobalt nanocrystals through the plane of graphene: Highly integrated electrocatalyst for oxygen reduction reaction. Chem. Mater. 2015, 27, 544–549.CrossRefGoogle Scholar
  24. [24]
    Bag, S.; Roy, K.; Gopinath, C. S.; Raj, C. R. Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl. Mater. Interfaces 2014, 6, 2692–2699.CrossRefGoogle Scholar
  25. [25]
    Feng, J.; Liang, Y. Y.; Wang, H. L.; Li, Y. G.; Zhang, B.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res. 2012, 5, 718–725.CrossRefGoogle Scholar
  26. [26]
    Banham, D.; Ye, S. Y.; Pei, K.; Ozaki, J. I.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of nonprecious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2015, 285, 334–348.CrossRefGoogle Scholar
  27. [27]
    Pinna, N.; Knez, M. Atomic Layer Deposition of Nanostructured Materials; Wiley-VCH: Weinheim, Germany, 2011.CrossRefGoogle Scholar
  28. [28]
    Knez, M.; Nielsch, K.; Niinistö, L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 2007, 19, 3425–3438.CrossRefGoogle Scholar
  29. [29]
    Tong, X. L.; Qin, Y.; Guo, X. Y.; Moutanabbir, O.; Ao, X. Y.; Pippel, E.; Zhang, L. B.; Knez, M. Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles-carbon nanotube hybrid materials. Small 2012, 8, 3390–3395.CrossRefGoogle Scholar
  30. [30]
    Yang, F.; Zhang, L. B.; Zuzuarregui, A.; Gregorczyk, K.; Li, L.; Beltrán, M.; Tollan, C.; Brede, J.; Rogero, C.; Chuvilin, A. et al. Functionalization of defect sites in graphene with RuO2 for high capacitive performance. ACS Appl. Mater. Interfaces 2015, 7, 20513–20519.CrossRefGoogle Scholar
  31. [31]
    Puurunen, R. L.; Vandervorst, W. Island growth as a growth mode in atomic layer deposition: A phenomenological model. J. Appl. Phys. 2004, 96, 7686–7695.CrossRefGoogle Scholar
  32. [32]
    Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.CrossRefGoogle Scholar
  33. [33]
    Fei, B.; Qian, B. T.; Yang, Z. Y.; Wang, R. H.; Liu, W. C.; Mak, C. L.; Xin, J. H. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 2008, 46, 1795–1797.CrossRefGoogle Scholar
  34. [34]
    Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.CrossRefGoogle Scholar
  35. [35]
    Malecki, A.; Tareen, J. A. K.; Doumerc, J. P.; Rabardel, L.; Launay, J. C. Kinetics of thermal decomposition of Co3O4 powder and single crystals. J. Solid State Chem. 1985, 56, 49–57.CrossRefGoogle Scholar
  36. [36]
    Malecki, A.; Doumerc, J. P. Kinetics of thermal decomposition of Co3O4 powder and single crystals: The kinetic model. J. Therm. Anal. 1990, 36, 215–222.CrossRefGoogle Scholar
  37. [37]
    Toniolo, J. C.; Takimi, A. S.; Bergmann, C. P. Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method. Mater. Res. Bull. 2010, 45, 672–676.CrossRefGoogle Scholar
  38. [38]
    Domínguez, M.; Taboada; E.; Idriss, H.; Molins, E.; Llorca, J. Fast and efficient hydrogen generation catalyzed by cobalt talc nanolayers dispersed in silica aerogel. J. Mater. Chem. 2010, 20, 4875–4883.CrossRefGoogle Scholar
  39. [39]
    Ho, C. T.; Weng, T. H.; Wang, C. Y.; Yen, S. J.; Yew, T. R. Tunable band gaps of Co3-xCuxO4 nanorods with various Cu doping concentrations. RSC Adv. 2014, 4, 20053–20057.CrossRefGoogle Scholar
  40. [40]
    Petitto, S. C.; Marsh, E. M.; Carson, G. A.; Langell, M. A. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J. Mol. Catal. A Chem. 2008, 281, 49–58.CrossRefGoogle Scholar
  41. [41]
    Cui, J. W.; Zhang, X. Y.; Tong, L.; Luo, J. B.; Wang, Y.; Zhang, Y.; Xie, K.; Wu, Y. C. Facile synthesis of mesoporous Co3O4/CeO2 hybrid nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 10425–10431.CrossRefGoogle Scholar
  42. [42]
    Qiao, L.; Xiao, H. Y.; Meyer, H. M.; Sun, J. N.; Rouleau, C. M.; Puretzky, A. A.; Geohegan, D. B.; Ivanov, I. N.; Yoon, M.; Weber, W. J. et al. Nature of the band gap and origin of the electro-/photo-activity of Co3O4. J. Mater. Chem. C 2013, 1, 4628–4633.CrossRefGoogle Scholar
  43. [43]
    Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.CrossRefGoogle Scholar
  44. [44]
    Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.CrossRefGoogle Scholar
  45. [45]
    Chao, S. J.; Cui, Q.; Bai, Z. Y.; Yan, H. Y.; Wang, K.; Yang, L. Varying N content and N/C ratio of the nitrogen precursor to synthesize highly active Co-Nx/C non-precious metal catalyst. Int. J. Hydrogen Energy 2014, 39, 14768–14776.CrossRefGoogle Scholar
  46. [46]
    Huang, D. K.; Luo, Y. P.; Li, S. H.; Zhang, B. Y.; Shen, Y.; Wang, M. K. Active catalysts based on cobalt oxide@cobalt/ N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 2014, 7, 1054–1064.CrossRefGoogle Scholar
  47. [47]
    Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.CrossRefGoogle Scholar
  48. [48]
    Wang, Z. J.; Li, B.; Ge, X. M.; Goh, F. W. T.; Zhang, X.; Du, G. J.; Wuu, D.; Liu, Z. L.; Andy Hor, T. S.; Zhang, H. et al. Co@Co3O4@PPD core@bishell nanoparticle-based composite as an efficient electrocatalyst for oxygen reduction reaction. Small 2016, 12, 2580–2587.CrossRefGoogle Scholar
  49. [49]
    Li, Y. Y.; Cheng, F. Y.; Zhang, J.; Chen, Z. M.; Xu, Q.; Guo, S. J. Cobalt-carbon core-shell nanoparticles aligned on wrinkle of N-doped carbon nanosheets with Pt-like activity for oxygen reduction. Small 2016, 12, 2839–2845.CrossRefGoogle Scholar
  50. [50]
    Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087–4091.CrossRefGoogle Scholar
  51. [51]
    Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Fan Yang
    • 1
  • Mikel Abadia
    • 2
  • Chaoqiu Chen
    • 1
  • Weike Wang
    • 1
  • Le Li
    • 1
  • Lianbing Zhang
    • 3
  • Celia Rogero
    • 2
    • 4
  • Andrey Chuvilin
    • 1
    • 5
  • Mato Knez
    • 1
    • 5
  1. 1.CIC nanoGUNE ConsoliderDonostia-San SebastianSpain
  2. 2.Centro de Física de Materials CFM/MPC (CSIC-UPV/EHU)Donostia-San SebastianSpain
  3. 3.School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
  4. 4.Donostia International Physics Center (DIPC)Donostia-San SebastianSpain
  5. 5.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations