Nano Research

, Volume 9, Issue 12, pp 3914–3923 | Cite as

Optimized stateful material implication logic for three-dimensional data manipulation

  • Gina C. AdamEmail author
  • Brian D. Hoskins
  • Mirko Prezioso
  • Dmitri B. StrukovEmail author
Research Article


The monolithic three-dimensional integration of memory and logic circuits could dramatically improve the performance and energy efficiency of computing systems. Some conventional and emerging memories are suitable for vertical integration, including highly scalable metal-oxide resistive switching devices (“memristors”). However, the integration of logic circuits has proven to be much more challenging than expected. In this study, we demonstrated memory and logic functionality in a monolithic three-dimensional circuit by adapting the recently proposed memristor-based stateful material implication logic. By modifying the original circuit to increase its robustness to device imperfections, we experimentally showed, for the first time, a reliable multi-cycle multi-gate material implication logic operation and half-adder circuit within a threedimensional stack of monolithically integrated memristors. Direct data manipulation in three dimensions enables extremely compact and high-throughput logicin- memory computing and, remarkably, presents a viable solution for the Feynman Grand Challenge of implementing an 8-bit adder at the nanoscale.


material implication logic memristor resistive random-access memory (ReRAM) three-dimensional integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1260_MOESM1_ESM.pdf (3.2 mb)
Optimized stateful material implication logic for threedimensional data manipulation


  1. [1]
    Borghetti, J.; Snider, G. S.; Kuekes, P. J.; Yang, J. J.; Stewart, D. R.; Williams, R. S. “Memristive” switches enable “stateful” logic operations via material implication. Nature 2010, 464, 873–876.CrossRefGoogle Scholar
  2. [2]
    Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.CrossRefGoogle Scholar
  3. [3]
    Wong, H.-S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.CrossRefGoogle Scholar
  4. [4]
    Chevallier, C. J.; Siau, C. H.; Lim, S. F.; Namala, S. R.; Matsuoka, M.; Bateman, B. L.; Rinerson, D. A 0.13 µm 64 Mb multi-layered conductive metal-oxide memory. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, USA, 2010, pp 260–261.CrossRefGoogle Scholar
  5. [5]
    Kawahara, A.; Azuma, R.; Ikeda, Y.; Kawai, K.; Katoh, Y.; Hayakawa, Y.; Tsuji, K.; Yoneda, S.; Himeno, A.; Shimakawa, K. et al. An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput. IEEE J Solid-State Circuits 2013, 48, 178–185.CrossRefGoogle Scholar
  6. [6]
    Yu, S. M.; Chen, H.-Y.; Gao, B.; Kang, J. F.; Wong, H.-S. P. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.CrossRefGoogle Scholar
  7. [7]
    Liu, T. Y.; Yan, T. H.; Scheuerlein, R.; Chen, Y. C.; Lee, J. K. Y.; Balakrishnan, G.; Yee, G.; Zhang, H.; Yap, A.; Ouyang, J. W. et al. A 130.7-mm2-layer 32-Gb ReRAM memory device in 24-nm technology. IEEE J. Solid-State Circuits 2014, 49, 140–153.CrossRefGoogle Scholar
  8. [8]
    Govoreanu, B.; Redolfi, A.; Zhang, L.; Adelmann, C.; Popovici, M.; Clima, S.; Hody, H.; Paraschiv, V.; Radu, I. P.; Franquet, A. et al. Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant, highly nonlinear and wide on/offwindow resistive switching cell. In Proceedings of the 2013 IEEE International Electron Devices Meeting (IEDM), Washington DC, USA, 2013.Google Scholar
  9. [9]
    Likharev, K. K.; Korotkov, A. N. “Single-electron parametron”: Reversible computation in a discrete state system. Science 1996, 273, 763–765.CrossRefGoogle Scholar
  10. [10]
    Cowburn, R. P.; Welland, M. E. Room temperature magnetic quantum cellular automata. Science 2000, 287, 1466–1468.CrossRefGoogle Scholar
  11. [11]
    Behin-Aein, B.; Datta, D.; Salahuddin, S.; Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 2010, 5, 266–270.CrossRefGoogle Scholar
  12. [12]
    Di Ventra, M.; Pershin, Y. V. The parallel approach. Nat. Phys. 2013, 9, 200–202.CrossRefGoogle Scholar
  13. [13]
    Chang, M. F.; Yang, S.-M.; Kuo, C.-C.; Yang, T.-C.; Yeh, C-J.; Chien, T.-F.; Huang, L.-Y.; Sheu, S.-S.; Tseng, P.-L.; Chen, Y.-S. et al. Set-triggered-parallel-reset memristor logic for high-density heterogeneous-integration friendly normally off applications. IEEE Trans. Circuits Syst. II, Exp. Briefs 2015, 62, 80–84.CrossRefGoogle Scholar
  14. [14]
    Wulf, W. A.; McKee, S. A. Hitting the memory wall: Implications of the obvious. ACM/SIGARCH Computer Architecture News 1995, 23, 20–24.CrossRefGoogle Scholar
  15. [15]
    Shin, S.; Kim, K.; Kang, S. M. Resistive computing: Memristors-enabled signal multiplication. IEEE Trans. Circuits Syst. I, Reg. Papers 2013, 60, 1241–1249.CrossRefGoogle Scholar
  16. [16]
    Zhu, X.; Yang, X. J.; Wu, C. Q.; Xiao, N.; Wu, J. J.; Yi, X. Performing stateful logic on memristor memory. IEEE Trans. Circuits Syst. II, Exp. Briefs 2013, 60, 682–686.CrossRefGoogle Scholar
  17. [17]
    Levy, Y.; Bruck, J.; Cassuto, Y.; Friedman, E. G.; Kolodny, A.; Yaakobi, E.; Kvatinsky, S. Logic operations in memory using a memristive Akers array. Microelectron. J. 2014, 45, 1429–1437.CrossRefGoogle Scholar
  18. [18]
    Mane, P.; Talati, N.; Riswadkar, A.; Raghu, R.; Ramesha, C. K. Stateful-NOR based reconfigurable architecture for logic implementation. Microelectron. J. 2015, 46, 551–562.CrossRefGoogle Scholar
  19. [19]
    Hamdioui, S.; Xie, L.; Nguyen, H. A. D.; Taouil, M.; Bertels, K.; Corporaal, H.; Jiao, H. L.; Catthoor, F.; Wouters, D.; Eike, L. et al. Memristor based computation-in-memory architecture for data-intensive applications. In Proceedings of Design, Automation and Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015, pp 1718–1725.Google Scholar
  20. [20]
    Lehtonen, E.; Poikonen, J. H.; Tissari, J.; Laiho, M.; Koskinen, L. Recursive algorithms in memristive logic arrays. IEEE Trans. Emerg. Sel. Topics Circuits Syst. 2015, 5, 279–292.CrossRefGoogle Scholar
  21. [21]
    Xie, L.; Nguyen, H. A. D.; Taouil, M.; Bertels, K.; Hamdioui, S. Fast boolean logic mapped on memristor crossbar. In Proceedings of the 2015 33rd International Conference on Computer Design (ICCD), New York City, USA, 2015, pp 335–342.Google Scholar
  22. [22]
    Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J. A learnable parallel processing architecture towards unity of memory and computing. Sci. Rep. 2015, 5, 13330.CrossRefGoogle Scholar
  23. [23]
    Sun, X. W.; Li, G. Q.; Ding, L. H.; Yang, N.; Zhang, W. F. Unipolar memristors enable “stateful” logic operations via material implication. Appl. Phys. Lett. 2011, 99, 072101.CrossRefGoogle Scholar
  24. [24]
    Prezioso, M.; Riminucci, A.; Graziosi, P.; Bergenti, I.; Rakshit, R.; Cecchini, R.; Vianelli, A.; Borgatti, F.; Haag, N.; Willis, M. et al. A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 2013, 25, 534–538.Google Scholar
  25. [25]
    Elstner, M.; Weisshart, K.; Mü llen, K.; Schiller, A. Molecular logic with a saccharide probe on the few-molecules level. J. Am. Chem. Soc. 2012, 134, 8098–8100.CrossRefGoogle Scholar
  26. [26]
    Mahmoudi, H.; Windbacher, T.; Sverdlov, V.; Selberherr, S. Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory. Solid-State Electron. 2013, 84, 191–197.CrossRefGoogle Scholar
  27. [27]
    Siemon, A.; Breuer, T.; Aslam, N.; Ferch, S.; Kim, W.; van den Hurk, J.; Rana, V.; Hoffmann-Eifert, S.; Waser, R.; Menzel, S. et al. Realization of Boolean logic functionality using redox-based memristive devices. Adv. Funct. Mat. 2015, 25, 6414–6423.CrossRefGoogle Scholar
  28. [28]
    Balatti, S.; Ambrogio, S.; Ielmini, D. Normally-off logic based on resistive switches - part II: Logic circuits. IEEE Trans. Electron Devices 2015, 62, 1839–1847.CrossRefGoogle Scholar
  29. [29]
    Zhou, Y. X.; Li, Y.; Xu, L.; Zhong, S. J.; Xu, R. G.; Miao, X. S. A hybrid memristor-CMOS XOR gate for nonvolatile logic computation. Phys. Status Solidi A 2016, 213, 1050–1054.CrossRefGoogle Scholar
  30. [30]
    Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E. G.; Kolodny, A.; Weiser, U. C. Memristor-based material implication (IMPLY) logic: Design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2054–2066.CrossRefGoogle Scholar
  31. [31]
    Lehtonen, E.; Poikonen, J. H.; Laiho, M. Applications and limitations of memristive implication logic. In Proceedings of the 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), Turin, Italy, 2012.Google Scholar
  32. [32]
    Siemon, A.; Menzel, S.; Chattopadhyay, A.; Waser, R.; Linn, E. In-memory adder functionality in 1S1R arrays. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015, pp 1338–1341.CrossRefGoogle Scholar
  33. [33]
    Ferch, S.; Linn, E.; Waser, R.; Menzel, S. Simulation and comparison of two sequential logic-in-memory approaches using a dynamic electrochemical metallization cell model. Microelectron. J. 2014, 45, 1416–1428.CrossRefGoogle Scholar
  34. [34]
    Kim, K.; Shin, S.; Kang, S. M. Field programmable stateful logic array. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 2011, 30, 1800–1813.CrossRefGoogle Scholar
  35. [35]
    Topol, A. W.; La Tulipe, D. C.; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S. E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W. et al. Three-dimensional integrated circuits. IBM J. Res. Develop. 2006, 50, 491–506.CrossRefGoogle Scholar
  36. [36]
    Xie, Y.; Loh, G. H.; Black, B.; Bernstein, K. Design space exploration for 3D architectures. ACM JETC 2006, 2, 65–103.CrossRefGoogle Scholar
  37. [37]
    Lehtonen, E.; Poikonen, J. H.; Laiho, M. Memristive Stateful Logic. In Memristor Networks; Adamatzky, A.; Chua, L., Eds.; Springer International Publishing: Switzerland, 2014; pp 603–623.CrossRefGoogle Scholar
  38. [38]
    Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.; Adam, G. C.; Likharev, K. K.; Strukov, D. B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64.CrossRefGoogle Scholar
  39. [39]
    Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.CrossRefGoogle Scholar
  40. [40]
    Mikheev, E.; Hoskins, B. D.; Strukov, D. B.; Stemmer, S. Resistive switching and its suppression in Pt/Nb: SrTiO3 junctions. Nat. Commun. 2014, 5, 3990.CrossRefGoogle Scholar
  41. [41]
    Sun, P. X.; Lu, N. D.; Li, L.; Li, Y. T.; Wang, H.; Lv, H. B.; Liu, Q.; Long, S. B.; Liu, S.; Liu, M. Thermal crosstalk in 3-dimensional RRAM crossbar array. Sci. Rep. 2015, 5, 13504.CrossRefGoogle Scholar
  42. [42]
    Prezioso, M.; Kataeva, I.; Merrikh-Bayat, F.; Hoskins, B.; Adam, G.; Sota, T.; Likharev, K.; Strukov, D. Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2–x/Pt Memristors. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington DC, USA, 2015.Google Scholar
  43. [43]
    Feynman Grand Prize [Online]. (accessed May 5, 2016).Google Scholar
  44. [44]
    Yang, J. J.; Miao, F.; Pickett, M. D.; Ohlberg, D. A. A.; Stewart, D. R.; Lau, C. N.; Williams, R. S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 2009, 20, 215201.CrossRefGoogle Scholar
  45. [45]
    Varesi, J.; Majumdar, A. Scanning Joule expansion microscopy at nanometer scales. Appl. Phys. Lett. 1998, 72, 37–39.CrossRefGoogle Scholar
  46. [46]
    Parhami, B. Computer Arithmetic: Algorithms and Hardware Designs; Oxford University Press: New York, NY, 2009.Google Scholar
  47. [47]
    Pi, S.; Lin, P.; Xia, Q. F. Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography. J. Vac. Sci. Technol. B 2013, 31, 06FA02.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Materials DepartmentUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations