Advertisement

Nano Research

, Volume 9, Issue 12, pp 3735–3746 | Cite as

A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries

  • Mingkai Liu
  • Zhibin Yang
  • Hao Sun
  • Chao Lai
  • Xinsheng Zhao
  • Huisheng PengEmail author
  • Tianxi LiuEmail author
Research Article

Abstract

The soluble nature of polysulfide species created on the sulfur electrode has severely hampered the electrochemical performance of lithium–sulfur (Li–S) batteries. Trapping and anchoring polysulfides are promising approaches for overcoming this issue. In this work, a mechanically robust, electrically conductive hybrid carbon aerogel (HCA) with aligned and interconnected pores was created and investigated as an interlayer for Li–S batteries. The hierarchical cross-linked networks constructed by graphene sheets and carbon nanotubes can act as an “internet” to capture the polysulfide, while the microand nano-pores inside the aerogel can facilitate quick penetration of the electrolyte and rapid transport of lithium ions. As advantages of the unique structure and excellent accommodation of the volume change of the active materials, a high specific capacity of 1,309 mAh·g−1 at 0.2 C was achieved for the assembled Li–S battery, coupled with good rate performance and long-term cycling stability (78% capacity retention after 600 cycles at 4 C).

Keywords

lithium–sulfur battery carbon aerogel interlayer aligned and interconnected pores trapped polysulfide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1244_MOESM1_ESM.pdf (5.1 mb)
A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries
12274_2016_1244_MOESM2_ESM.mp4 (3.2 mb)
Supplementary material, approximately 48.5 KB.

References

  1. [1]
    Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 2013, 4, 2985.Google Scholar
  2. [2]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.Google Scholar
  3. [3]
    Yang, Z. B.; Sun, H.; Chen, T.; Qiu, L. B.; Luo, Y. F.; Peng, H. S. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem., Int. Ed. 2013, 52, 7545–7548.CrossRefGoogle Scholar
  4. [4]
    Jung, D. S.; Hwang, T. H.; Lee, J. H.; Koo, H. Y.; Shakoor, R. A.; Kahraman, R.; Jo, Y. N.; Park, M. S.; Choi, J. W. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014, 14, 4418–4425.CrossRefGoogle Scholar
  5. [5]
    Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew.Chem.,Int. Ed. 2013, 52, 6930–6935.CrossRefGoogle Scholar
  6. [6]
    Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.CrossRefGoogle Scholar
  7. [7]
    Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.CrossRefGoogle Scholar
  8. [8]
    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries:Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.CrossRefGoogle Scholar
  9. [9]
    Yao, H. B.; Zheng, G. Y.; Hsu, P. C.; Kong, D. S.; Cha, J. J.; Li, W. Y.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z.et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.Google Scholar
  10. [10]
    Zhang, Z.; Jing, H. K.; Liu, S.; Li, G. R.; Gao, X. P. Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 6827–6834.CrossRefGoogle Scholar
  11. [11]
    Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.CrossRefGoogle Scholar
  12. [12]
    Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.Google Scholar
  13. [13]
    Chung, S. H.; Manthiram, A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries. Chem. Commun. 2014, 50, 4184–4187.CrossRefGoogle Scholar
  14. [14]
    Yan, J. H.; Li, B. Y.; Liu, X. B. Nano-porous sulfurpolyaniline electrodes for lithium-sulfurbatteries. Nano Energy 2015, 18, 245–252.CrossRefGoogle Scholar
  15. [15]
    Yan, J. H.; Liu, X. B.; Yao, M.; Wang, X. F.; Wafle, T. K.; Li, B. Y. Long-life, high-efficiency lithium-sulfur battery from a nanoassembled cathode. Chem. Mater. 2015, 27, 5080–5087.CrossRefGoogle Scholar
  16. [16]
    Yan, J. H.; Liu, X. B.; Qi, H.; Li, W. Y.; Zhou, Y.; Yao, M.; Li, B. Y. High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading. Chem. Mater. 2015, 27, 6394–6401.CrossRefGoogle Scholar
  17. [17]
    Huang, Y.; Zheng, M. B.; Lin, Z. X.; Zhao, B.; Zhang, S. T.; Yang, J. Z.; Zhu, C. L.; Zhang, H.; Sun, D. P.; Shi, Y. Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 10910–10918.CrossRefGoogle Scholar
  18. [18]
    Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphenepure- sulfur sandwich structure for ultrafast, long-life lithiumsulfur batteries. Adv. Mater. 2014, 26, 625–631.Google Scholar
  19. [19]
    Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Mesoporouscarbon interlayers with tailored pore volume as polysulfide reservoir for high-energy lithium–sulfur batteries. J. Phys. Chem. C 2015, 119, 4580–4587.CrossRefGoogle Scholar
  20. [20]
    Yan, J. H.; Liu, X. B.; Wang, X. F.; Li, B. Y. Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes. J. Mater. Chem. A 2015, 3, 10127–10133.CrossRefGoogle Scholar
  21. [21]
    Singhal, R.; Chung, S. H.; Manthiram, A.; Kalra, V. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 4530–4538.CrossRefGoogle Scholar
  22. [22]
    Song, J. X.; Yu, Z. X.; Xu, T.; Chen, S. R.; Sohn, H. S.; Regula, M.; Wang, D. H. Flexible freestanding sandwichstructured sulfur cathode with superior performance for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 8623–8627.CrossRefGoogle Scholar
  23. [23]
    Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819.CrossRefGoogle Scholar
  24. [24]
    Lee, C. L.; Kim, I. D. A hierarchical carbon nanotubeloaded glass-filter composite paper interlayer with outstanding electrolyte uptake properties for high-performance lithium–sulphur batteries. Nanoscale 2015, 7, 10362–10367.CrossRefGoogle Scholar
  25. [25]
    Gu, X. X.; Lai, C.; Liu, F.; Yang, W. L.; Hou, Y. L.; Zhang, S. Q. A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. J. Mater. Chem. A 2015, 3, 9502–9509.CrossRefGoogle Scholar
  26. [26]
    Wang, B.; Wen, Y. F.; Ye, D. L.; Yu, H.; Sun, B.; Wang, G. X.; Hulicova-Jurcakova, D.; Wang, L. Z. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithiumsulfur batteries. Chem.—Eur. J. 2014, 20, 5224–5230.CrossRefGoogle Scholar
  27. [27]
    Chung, S. H.; Manthiram, A. Bifunctionalseparator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 5299–5306.CrossRefGoogle Scholar
  28. [28]
    Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.CrossRefGoogle Scholar
  29. [29]
    Xu, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 2013, 25, 3249–3253.CrossRefGoogle Scholar
  30. [30]
    Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.CrossRefGoogle Scholar
  31. [31]
    Bae, S.; Kim, H.; Lee, Y. B.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  32. [32]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.CrossRefGoogle Scholar
  33. [33]
    Mi, X.; Huang, G. B.; Xie, W. S.; Wang, W.; Liu, Y.; Gao, J. P. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 2012, 50, 4856–4864.CrossRefGoogle Scholar
  34. [34]
    Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.CrossRefGoogle Scholar
  35. [35]
    Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.CrossRefGoogle Scholar
  36. [36]
    Gu, X. X.; Wang, Y. Z.; Lai, C.; Qiu, J. X.; Li, S.; Hou, Y. O.; Martens, W.; Mahmood, N.; Zhang, S. Q. Microporous bamboo biochar for lithium-sulfur batteries. Nano Res. 2015, 8, 129–139.CrossRefGoogle Scholar
  37. [37]
    Wang, W. G.; Wang, X.; Tian, L. Y.; Wang, Y. L.; Ye, S. H. In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 4316–4323.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina
  2. 2.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced MaterialsFudan UniversityShanghaiChina
  3. 3.School of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhouChina
  4. 4.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations