Nano Research

, Volume 9, Issue 11, pp 3181–3208 | Cite as

Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds

  • Kowsalya Vellingiri
  • Pawan Kumar
  • Ki-Hyun KimEmail author
Review Article


Over the past few decades, coordination polymers/metal organic frameworks (CPs/MOFs) have drawn a great deal of attention for diverse applications due to their advantages of intrinsically tunable chemical structure, flexible architecture, high pore volume, high surface area, multifunctional properties, etc. To date, numerous CPs/MOFs have been developed and employed for the treatment and control of gaseous pollutants, such as volatile organic compounds (VOCs), through capture, sorptive removal, and catalytic degradation. Nevertheless, there are also some key drawbacks and challenges for the practical application of these systems (e.g., poor selectivity, high energy (and fiscal) cost, high synthesis cost, low capacity, and difficulties in regeneration and recycling). In this review, recent developments in CPs/MOFs research are described with their associated mechanisms for capture, sorptive removal, and catalytic degradation of VOCs. To this end, we discuss the key variables and challenges for afforded abatement of VOCs through CPs/MOFs technologies. Hopefully, this review will help the scientific community set future directions for the advancement of CPs/MOFs techniques for the effective management of diverse environmental issues.


coordination polymers/metal organic frameworks (CPs/MOFs) volatile organic compounds sorptive removal catalytic degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A. et al. A global model of natural volatile organic compound emissions. J. Geophys. Res.: Atmos. 1995, 100, 8873–8892.CrossRefGoogle Scholar
  2. [2]
    Sahu, L. K. Volatile organic compounds and their measurements in the troposphere. Curr. Sci. 2012, 102, 1645–1649.Google Scholar
  3. [3]
    Goldstein, A. H.; Galbally, I. E. Known and unexplored organic constituents in the earth’s atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521.CrossRefGoogle Scholar
  4. [4]
    Guenther, A. Atmospheric chemistry: Are plant emissions green? Nature 2008, 452, 701–702.CrossRefGoogle Scholar
  5. [5]
    Hester, R. E.; Harrison, R. M.; Derwent, R. G. Sources, distributions, and fates of VOCs in the atmosphere. In Volatile Organic Compounds in the Atmosphere; Hester, R. E., Ed.; Springer Verlag: Berlin, 1995; pp 1–16.Google Scholar
  6. [6]
    Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638.CrossRefGoogle Scholar
  7. [7]
    Mølhave, L.; Clausen, G.; Berglund, B.; De Ceaurriz, J.; Kettrup, A.; Lindvall, T.; Maroni, M.; Pickering, A. C.; Risse, U.; Rothweiler, H. et al. Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air 1997, 7, 225–240.CrossRefGoogle Scholar
  8. [8]
    Calvert, J. G.; Atkinson, R.; Becker, K. H.; Kamens, R. M.; Seinfeld, J. H.; Wallington, T. J.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons; Oxford University Press: New York, 2002.Google Scholar
  9. [9]
    Lurmann, F. W.; Main, H. H.; Knapp, K. T.; Stockburger, L.; Rasmussen, R. A.; Fung, K. Analysis of the Ambient VOC Data Collected in the Southern California Air Quality Study; Sonoma Technology, Inc.: Santa Rosa, CA, 1992.Google Scholar
  10. [10]
    Mølhave, L.; Bach, B.; Pedersen, O. F. Human reactions to low concentrations of volatile organic compounds. Environ. Int. 1986, 12, 167–175.CrossRefGoogle Scholar
  11. [11]
    Ashley, D. L.; Bonin, M. A.; Cardinali, F. L.; McCraw, J. M.; Wooten, J. V. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin. Chem. 1994, 40, 1401–1404.Google Scholar
  12. [12]
    Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P. Volatile organic compounds in breath as markers of lung cancer: A crosssectional study. J. Lancet 1999, 353, 1930–1933.CrossRefGoogle Scholar
  13. [13]
    Brown, H. S.; Bishop, D. R.; Rowan, C. A. The role of skin absorption as a route of exposure for volatile organic compounds (VOCs) in drinking water. Am. J. Public Health 1984, 74, 479–484.CrossRefGoogle Scholar
  14. [14]
    Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.CrossRefGoogle Scholar
  15. [15]
    Asami, K.; Fujita, T.; Kusakabe, K.-I.; Nishiyama, Y.; Ohtsuka, Y. Conversion of methane with carbon dioxide into C2 hydrocarbons over metal oxides. Appl. Catal. A: Gen. 1995, 126, 245–255.CrossRefGoogle Scholar
  16. [16]
    Ramis, G.; Busca, G.; Lorenzelli, V. Low-temperature CO2 adsorption on metal oxides: Spectroscopic characterization of some weakly adsorbed species. Mater. Chem. Phys. 1991, 29, 425–435.CrossRefGoogle Scholar
  17. [17]
    Schlatter, J. C.; Oyama, S. T.; Metcalfe, J. E. Lambert, J. M., Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. Ind. Eng. Chem. Res. 1988, 27, 1648–1653.CrossRefGoogle Scholar
  18. [18]
    Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152–155.CrossRefGoogle Scholar
  19. [19]
    Sircar, S.; Golden, T. C.; Rao, M. B. Activated carbon for gas separation and storage. Carbon 1996, 34, 1–12.CrossRefGoogle Scholar
  20. [20]
    Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.CrossRefGoogle Scholar
  21. [21]
    Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J. Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm 2012, 14, 3001–3004.CrossRefGoogle Scholar
  22. [22]
    Bureekaew, S.; Shimomura, S.; Kitagawa, S. Chemistry and application of flexible porous coordination polymers. Sci. Technol. Adv. Mater. 2008, 9, 014108.CrossRefGoogle Scholar
  23. [23]
    Férey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P. L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J.-S. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 2011, 40, 550–562.CrossRefGoogle Scholar
  24. [24]
    Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244–245, 444–456.CrossRefGoogle Scholar
  25. [25]
    Robson, R. A net-based approach to coordination polymers. J. Chem. Soc., Dalton Trans. 2000, 3735–3744.Google Scholar
  26. [26]
    Kim, J.; Chen, B. L.; Reineke, T. M.; Li, H. L.; Eddaoudi, M.; Moler, D. B.; O’Keeffe, M.; Yaghi, O. M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247.CrossRefGoogle Scholar
  27. [27]
    Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’keeffe, M.; Yaghi, O. M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.CrossRefGoogle Scholar
  28. [28]
    Chae, H. K.; Eddaoudi, M.; Kim, J.; Hauck, S. I.; Hartwig, J. F.; O’Keeffe, M.; Yaghi, O. M. Tertiary building units: Synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J. Am. Chem. Soc. 2001, 123, 11482–11483.CrossRefGoogle Scholar
  29. [29]
    Basdogan, Y.; Keskin, S. Simulation and modelling of MOFs for hydrogen storage. CrystEngComm 2015, 17, 261–275.CrossRefGoogle Scholar
  30. [30]
    Cirera, J.; Babin, V.; Paesani, F. Theoretical modeling of spin crossover in metal-organic frameworks: [Fe(pz)2Pt(CN)4]_as a case study. Inorg. Chem. 2014, 53, 11020–11028.CrossRefGoogle Scholar
  31. [31]
    Rudenko, A. N.; Bendt, S.; Keil, F. J. Multiscale modeling of water in Mg-MOF-74: From electronic structure calculations to adsorption isotherms. J. Phys. Chem. C 2014, 118, 16218–16227.CrossRefGoogle Scholar
  32. [32]
    Van de Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive separation on metal-organic frameworks in the liquid phase. Chem. Soc. Rev. 2014, 43, 5766–5788.CrossRefGoogle Scholar
  33. [33]
    De Coste, J. B.; Peterson, G. W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 2014, 114, 5695–5727.CrossRefGoogle Scholar
  34. [34]
    Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.CrossRefGoogle Scholar
  35. [35]
    Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metalorganic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 1922–1947.CrossRefGoogle Scholar
  36. [36]
    Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750–5765.CrossRefGoogle Scholar
  37. [37]
    Huang, G.; Chen, Y. Z.; Jiang, H. L. Metal-organic frameworks for catalysis. Acta Chim. Sinica 2016, 74, 113–129.CrossRefGoogle Scholar
  38. [38]
    Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, L.; Su, C. Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061.CrossRefGoogle Scholar
  39. [39]
    Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749–3753.CrossRefGoogle Scholar
  40. [40]
    Heinke, L.; Tu, M.; Wannapaiboon, S.; Fischer, R. A.; Wö ll, C. Surface-mounted metal-organic frameworks for applications in sensing and separation. Microporous Mesoporous Mater. 2015, 216, 200–215.CrossRefGoogle Scholar
  41. [41]
    Qin, W. W.; Silvestre, M. E.; Kirschhö fer, F.; Brenner-Weiss, G.; Franzreb, M. Insights into chromatographic separation using core–shell metal-organic frameworks: Size exclusion and polarity effects. J. Chromatogr. A 2015, 1411, 77–83.CrossRefGoogle Scholar
  42. [42]
    Mellouki, A.; Wallington, T. J.; Chen, J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate. Chem. Rev. 2015, 115, 3984–4014.CrossRefGoogle Scholar
  43. [43]
    Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.CrossRefGoogle Scholar
  44. [44]
    Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 2011, 112, 869-932.CrossRefGoogle Scholar
  45. [45]
    Bradshaw, D.; El-Hankari, S.; Lupica-Spagnolo, L. Supramolecular templating of hierarchically porous metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5431–5443.CrossRefGoogle Scholar
  46. [46]
    Miras, H. N.; Vilà- Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.CrossRefGoogle Scholar
  47. [47]
    Zhang, Z. J.; Zaworotko, M. J. Template-directed synthesis of metal-organic materials. Chem. Soc. Rev. 2014, 43, 5444–5455.CrossRefGoogle Scholar
  48. [48]
    Zou, T. T.; Lum, C. T.; Lok, C.-N.; Zhang, J.-J.; Che, C.-M. Chemical biology of anticancer gold (III) and gold (I) complexes. Chem. Soc. Rev. 2015, 44, 8786–8801.CrossRefGoogle Scholar
  49. [49]
    Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6686.CrossRefGoogle Scholar
  50. [50]
    Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804–6849.CrossRefGoogle Scholar
  51. [51]
    Du, M.; Li, C.-P.; Liu, C.-S.; Fang, S.-M. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord. Chem. Rev. 2013, 257, 1282–1305.CrossRefGoogle Scholar
  52. [52]
    Wu, H. H.; Gong, Q. H.; Olson, D. H.; Li, J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 2012, 112, 836–868.CrossRefGoogle Scholar
  53. [53]
    Zhang, S.-Y.; Shi, W.; Cheng, P.; Zaworotko, M. J. A mixed-crystal lanthanide zeolite-like metal-organic framework as a fluorescent indicator for Lysophosphatidic acid, a cancer biomarker. J. Am. Chem. Soc. 2015, 137, 12203–12206.Google Scholar
  54. [54]
    Keller, J. U.; Staudt, R. Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms; Springer: USA, 2005.Google Scholar
  55. [55]
    Monneyron, P.; Manero, M.-H.; Foussard, J.-N. Measurement and modeling of single-and multi-component adsorption equilibria of VOC on high-silica zeolites. Environ. Sci. Technol. 2003, 37, 2410–2414.CrossRefGoogle Scholar
  56. [56]
    Ryu, Y.-K.; Chang, J.-W.; Jung, S.-Y.; Lee, C.-H. Adsorption isotherms of toluene and gasoline vapors on DAY zeolite. J. Chem. Eng. Data 2002, 47, 363–366.CrossRefGoogle Scholar
  57. [57]
    Hasan, Z.; Tong, M. M.; Jung, B. K.; Ahmed, I.; Zhong, C. L.; Jhung, S. H. Adsorption of pyridine over amino-functionalized metal-organic frameworks: Attraction via hydrogen bonding versus base–base repulsion. J. Phys. Chem. C 2014, 118, 21049–21056.CrossRefGoogle Scholar
  58. [58]
    Bellat, J.-P.; Simonot-Grange, M.-H.; Jullian, S. Adsorption of gaseous p-xylene and m-xylene on NaY, KY,and BaY zeolites: Part 1. Adsorption equilibria of pure xylenes. Zeolites 1995, 15, 124–130.Google Scholar
  59. [59]
    Denayer, J. F. M.; Baron, G. V. Adsorption of normal and branched paraffins in faujasite zeolites NaY, HY, Pt/NaY and USY. Adsorption 1997, 3, 251–265.CrossRefGoogle Scholar
  60. [60]
    Hufton, J. R.; Ruthven, D. M.; Danner, R. P. Adsorption and diffusion of hydrocarbons in silicalite at very low concentration: Effect of defect sites. Microporous Mater. 1995, 5, 39–52.CrossRefGoogle Scholar
  61. [61]
    Gu, Z.-Y.; Jiang, D.-Q.; Wang, H.-F.; Cui, X.-Y.; Yan, X.-P. Adsorption and separation of xylene isomers and ethylbenzene on two Zn–terephthalate metal–organic frameworks. J. Phys. Chem. C 2010, 114, 311–316.CrossRefGoogle Scholar
  62. [62]
    Zhao, X. S.; Lu, G. Q.; Hu, X. Organophilicity of MCM-41 adsorbents studied by adsorption and temperature-programmed desorption. Colloids Surf. A 2001, 179, 261–269.CrossRefGoogle Scholar
  63. [63]
    Serrano, D. P.; Calleja, G.; Botas, J. A.; Gutierrez, F. J. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal. Ind. Eng. Chem. Res. 2004, 43, 7010–7018.CrossRefGoogle Scholar
  64. [64]
    Bathen, D.; Schmidt-Traub, H.; Simon, M. Gas adsorption isotherm for dealuminated zeolites. Ind. Eng. Chem. Res. 1997, 36, 3993–3994.CrossRefGoogle Scholar
  65. [65]
    El Brihi, T.; Jaubert, J.-N.; Barth, D.; Perrin, L. Determining volatile organic compounds’ adsorption isotherms on dealuminated Y zeolite and correlation with different models. J. Chem. Eng. Data 2002, 47, 1553–1557.CrossRefGoogle Scholar
  66. [66]
    Wang, C.-M.; Chang, K.-S.; Chung, T.-W.; Wu, H. Adsorption equilibria of aromatic compounds on activated carbon, silica gel, and 13X zeolite. J. Chem. Eng. Data 2004, 49, 527–531.CrossRefGoogle Scholar
  67. [67]
    Shim, W. G.; Lee, J. W.; Moon, H. Adsorption equilibrium and column dynamics of VOCs on MCM-48 depending on pelletizing pressure. Microporous Mesoporous Mater. 2006, 88, 112–125.CrossRefGoogle Scholar
  68. [68]
    Chowdhury, P.; Bikkina, C.; Gumma, S. Gas adsorption properties of the chromium-based metal organic framework MIL-101. J. Phys. Chem. C 2009, 113, 6616–6621.CrossRefGoogle Scholar
  69. [69]
    Ma, F.-J.; Liu, S.-X.; Liang, D.-D.; Ren, G.-J.; Wei, F.; Chen, Y.-G.; Su, Z.-M. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates. J. Solid State Chem. 2011, 184, 3034–3039.CrossRefGoogle Scholar
  70. [70]
    Huang, C.-Y.; Song, M.; Gu, Z.-Y.; Wang, H.-F.; Yan, X.-P. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 2011, 45, 4490–4496.CrossRefGoogle Scholar
  71. [71]
    Trung, T. K.; Ramsahye, N. A.; Trens, P.; Tanchoux, N.; Serre, C.; Fajula, F.; Férey, G. Adsorption of C5-C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr): A manometric study. Microporous Mesoporous Mater. 2010, 134, 134–140.CrossRefGoogle Scholar
  72. [72]
    Dutour, S.; Nokerman, J.; Limborg-Noetinger, S.; Frère, M. Simultaneous determination of mass and calorimetric adsorption data of volatile organic compounds on microporous media in the low relative pressure range. Meas. Sci. Technol. 2004, 15, 185–194.CrossRefGoogle Scholar
  73. [73]
    Guillemot, M.; Mijoin, J.; Mignard, S.; Magnoux, P. Adsorption of tetrachloroethylene on cationic X and Y zeolites: Influence of cation nature and of water vapor. Ind. Eng. Chem. Res. 2007, 46, 4614–4620.CrossRefGoogle Scholar
  74. [74]
    Yang, K.; Sun, Q.; Xue, F.; Lin, D. H. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape. J. Hazard. Mater. 2011, 195, 124–131.CrossRefGoogle Scholar
  75. [75]
    Ahmed, I.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs. Appl. Catal. B: Environ. 2013, 129, 123–129.CrossRefGoogle Scholar
  76. [76]
    Ahmed, I.; Jhung, S. H. Adsorptive denitrogenation of model fuel with CuCl-loaded metal-organic frameworks (MOFs). Chem. Eng. J. 2014, 251, 35–42.CrossRefGoogle Scholar
  77. [77]
    Lamia, N.; Jorge, M.; Granato, M. A.; Paz, F. A. A.; Chevreau, H.; Rodrigues, A. E. Adsorption of propane, propylene and isobutane on a metal-organic framework: Molecular simulation and experiment. Chem. Eng. Sci. 2009, 64, 3246–3259.CrossRefGoogle Scholar
  78. [78]
    Gücüyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 2010, 132, 17704–17706.CrossRefGoogle Scholar
  79. [79]
    Jhung, S. H.; Lee, J. H.; Yoon, J. W.; Serre, C.; Férey, G.; Chang, J. S. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 2007, 19, 121–124.CrossRefGoogle Scholar
  80. [80]
    Trens, P.; Belarbi, H.; Shepherd, C.; Gonzalez, P.; Ramsahye, N. A.; Lee, U.-H.; Seo, Y.-K.; Chang, J.-S. Coadsorption of n-hexane and benzene vapors onto the chromium terephthalatebased porous material MIL-101(Cr): An experimental and computational study. J. Phys. Chem. C 2012, 116, 25824–25831.CrossRefGoogle Scholar
  81. [81]
    Trens, P.; Belarbi, H.; Shepherd, C.; Gonzalez, P.; Ramsahye, N. A.; Lee, U.-H.; Seo, Y.-K.; Chang, J.-S. Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): An experimental and computational study. Microporous Mesoporous Mater. 2014, 183, 17–22.CrossRefGoogle Scholar
  82. [82]
    Yang, K.; Xue, F.; Sun, Q.; Yue, R. L.; Lin, D. H. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177. J. Environ. Chem. Eng. 2013, 1, 713–718.CrossRefGoogle Scholar
  83. [83]
    Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634–8642.CrossRefGoogle Scholar
  84. [84]
    Zhao, Z. X.; Li, X. M.; Huang, S. S.; Xia, Q. B.; Li, Z. Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation. Ind. Eng. Chem. Res. 2011, 50, 2254–2261.CrossRefGoogle Scholar
  85. [85]
    Zhao, Z. X.; Li, X. M.; Li, Z. Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101. Chem. Eng. J. 2011, 173, 150–157.CrossRefGoogle Scholar
  86. [86]
    Hong, D. Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J. S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater. 2009, 19, 1537–1552.CrossRefGoogle Scholar
  87. [87]
    Qin, W. P.; Cao, W. X.; Liu, H. L.; Li, Z.; Li, Y. W. Metal-organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. RSC Adv. 2014, 4, 2414–2420.CrossRefGoogle Scholar
  88. [88]
    Sun, X. J.; Xia, Q. B.; Zhao, Z. X.; Li, Y. W.; Li, Z. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chem. Eng. J. 2014, 239, 226–232.CrossRefGoogle Scholar
  89. [89]
    Ferreira, A. F. P.; Santos, J. C.; Plaza, M. G.; Lamia, N.; Loureiro, J. M.; Rodrigues, A. E. Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chem. Eng. J. 2011, 167, 1–12.CrossRefGoogle Scholar
  90. [90]
    Xu, F.; Xian, S. K.; Xia, Q. B.; Li, Y. W.; Li, Z. Effect of textural properties on the adsorption and desorption of toluene on the metal-organic frameworks HKUST-1 and MIL-101. Adsorpt. Sci. Technol. 2013, 31, 325–340.CrossRefGoogle Scholar
  91. [91]
    Zhao, Z. X.; Wang, S.; Yang, Y.; Li, X. M.; Li, J.; Li, Z. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chem. Eng. J. 2015, 259, 79–89.CrossRefGoogle Scholar
  92. [92]
    Shim, W.-G.; Hwang, K.-J.; Chung, J.-T.; Baek, Y.-S.; Yoo, S.-J.; Kim, S.-C.; Moon, H.; Lee, J.-W. Adsorption and thermodesorption characteristics of benzene in nanoporous metal organic framework MOF-5. Adv. Powder Technol. 2012, 23, 615–619.CrossRefGoogle Scholar
  93. [93]
    Shi, J.; Zhao, Z. X.; Xia, Q. B.; Li, Y. W.; Li, Z. Adsorption and diffusion of ethyl acetate on the chromium-based metalorganic framework MIL-101. J. Chem. Eng. Data 2011, 56, 3419–3425.CrossRefGoogle Scholar
  94. [94]
    Xian, S. K.; Li, X. L.; Xu, F.; Xia, Q. B.; Li, Z. Adsorption isotherms, kinetics, and desorption of 1,2-dichloroethane on chromium-based metal organic framework MIL-101. Sep. Sci. Technol. 2013, 48, 1479–1489.CrossRefGoogle Scholar
  95. [95]
    Lee, J. S.; Jhung, S. H. Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96: An unusual increase of adsorption capacity with temperature. Microporous Mesoporous Mater. 2010, 129, 274–277.CrossRefGoogle Scholar
  96. [96]
    Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 2008, 105, 11623–11627.CrossRefGoogle Scholar
  97. [97]
    Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M. A.; Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer, J. F. M. et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium (IV) terephthalate MIL-47. Angew. Chem., Int. Ed. 2007, 46, 4293–4297.CrossRefGoogle Scholar
  98. [98]
    Forster, P. M.; Burbank, A. R.; Livage, C.; Férey, G.; Cheetham, A. K. The role of temperature in the synthesis of hybrid inorganic–organic materials: The example of cobalt succinates. Chem. Commun. 2004, 368–369.Google Scholar
  99. [99]
    Forster, P. M.; Stock, N.; Cheetham, A. K. A highthroughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic–organic materials. Angew. Chem., Int. Ed. 2005, 44, 7608–7611.CrossRefGoogle Scholar
  100. [100]
    Serre, C.; Groves, J. A.; Lightfoot, P.; Slawin, A. M.; Wright, P. A.; Stock, N.; Bein, T.; Haouas, M.; Taulelle, F.; Férey, G. Synthesis, structure and properties of related microporous N,N’-piperazinebismethylenephosphonates of aluminum and titanium. Chem. Mater. 2006, 18, 1451–1457.CrossRefGoogle Scholar
  101. [101]
    Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.CrossRefGoogle Scholar
  102. [102]
    Yilmaz, B.; Trukhan, N.; Müller, U. Industrial outlook on zeolites and metal organic frameworks. Chinese J. Catal. 2012, 33, 3–10.CrossRefGoogle Scholar
  103. [103]
    Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Paz, F. A. A. Multifunctional metal-organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 2015, 44, 6774–6803.CrossRefGoogle Scholar
  104. [104]
    Chen, N.; Yang, R. T. Ab initio molecular orbital study of adsorption of oxygen, nitrogen, and ethylene on silverzeolite and silver halides. Ind. Eng. Chem. Res. 1996, 35, 4020–4027.CrossRefGoogle Scholar
  105. [105]
    Vellingiri, K.; Szulejko, J. E.; Kumar, P.; Kwon, E. E.; Kim, K.-H.; Deep, A.; Boukhvalov, D. W.; Brown, R. J. C. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci. Rep. 2016, 6, 27813.CrossRefGoogle Scholar
  106. [106]
    Thomas, K. M. Hydrogen adsorption and storage on porous materials. Catal. Today 2007, 120, 389–398.CrossRefGoogle Scholar
  107. [107]
    Zhao, Y. X.; Seredych, M.; Zhong, Q.; Bandosz, T. J. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature. ACS Appl. Mater. Interfaces 2013, 5, 4951–4959.CrossRefGoogle Scholar
  108. [108]
    Liu, B. J.; Yang, F.; Zou, Y. X.; Peng, Y. Adsorption of phenol and p-nitrophenol from aqueous solutions on metalorganic frameworks: Effect of hydrogen bonding. J. Chem. Eng. Data 2014, 59, 1476–1482.CrossRefGoogle Scholar
  109. [109]
    Petit, C.; Bandosz, T. J. Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: Analysis of surface interactions. Adv. Funct. Mater. 2010, 20, 111–118.CrossRefGoogle Scholar
  110. [110]
    Planas, N.; Dzubak, A. L.; Poloni, R.; Lin, L.-C.; McManus, A.; McDonald, T. M.; Neaton, J. B.; Long, J. R.; Smit, B.; Gagliardi, L. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. J. Am. Chem. Soc. 2013, 135, 7402–7405.CrossRefGoogle Scholar
  111. [111]
    Zhao, D.; Yuan, D. Q.; Krishna, R.; van Baten, J. M.; Zhou, H.-C. Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage. Chem. Commun. 2010, 46, 7352–7354.CrossRefGoogle Scholar
  112. [112]
    Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M.-L.; Schnadt, J. Pyridine adsorption on single-layer iron phthalocyanine on Au(111). J. Phys. Chem. C 2011, 115, 20201–20208.CrossRefGoogle Scholar
  113. [113]
    Mollenhauer, D.; Gaston, N.; Voloshina, E.; Paulus, B. Interaction of pyridine derivatives with a gold (111) surface as a model for adsorption to large nanoparticles. J. Phys. Chem. C 2013, 117, 4470–4479.CrossRefGoogle Scholar
  114. [114]
    Ng, W. K. H.; Liu, J. W.; Liu, Z.-F. Reaction barriers and cooperative effects for the adsorption of pyridine on Si(100). J. Phys. Chem. C 2013, 117, 26644–26651.CrossRefGoogle Scholar
  115. [115]
    Rosenbach, N.; Ghoufi, A.; Déroche, I.; Llewellyn, P. L.; Devic, T.; Bourrelly, S.; Serre, C.; Férey, G.; Maurin, G. Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal-organic frameworks: A combination of molecular simulations and microcalorimetry/ gravimetry measurements. Phys. Chem. Chem. Phys. 2010, 12, 6428–6437.CrossRefGoogle Scholar
  116. [116]
    Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007, 315, 1828–1831.CrossRefGoogle Scholar
  117. [117]
    Llewellyn, P. L.; Horcajada, P.; Maurin, G.; Devic, T.; Rosenbach, N.; Bourrelly, S.; Serre, C.; Vincent, D.; Loera-Serna, S.; Filinchuk, Y. et al. Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). J. Am. Chem. Soc. 2009, 131, 13002–13008.CrossRefGoogle Scholar
  118. [118]
    Coudert, F.-X.; Mellot-Draznieks, C.; Fuchs, A. H.; Boutin, A. Double structural transition in hybrid material MIL-53 upon hydrocarbon adsorption: The thermodynamics behind the scenes. J. Am. Chem. Soc. 2009, 131, 3442–3443.CrossRefGoogle Scholar
  119. [119]
    Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610.CrossRefGoogle Scholar
  120. [120]
    Raghavan, K. V.; Reddy, B. M. Industrial Catalysis and Separations: Innovations for Process Intensification; Apple Academic Press: Waretown, NJ, 2014.CrossRefGoogle Scholar
  121. [121]
    Seo, J.; Matsuda, R.; Sakamoto, H.; Bonneau, C.; Kitagawa, S. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J. Am. Chem. Soc. 2009, 131, 12792–12800.CrossRefGoogle Scholar
  122. [122]
    Armstrong, D. W.; He, L. F.; Liu, Y.-S. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal. Chem. 1999, 71, 3873–3876.CrossRefGoogle Scholar
  123. [123]
    Berthod, A.; Zhou, E. Y.; Le, K.; Armstrong, D. W. Determination and use of Rohrschneider–McReynolds constants for chiral stationary phases used in capillary gas chromatography. Anal. Chem. 1995, 67, 849–857.CrossRefGoogle Scholar
  124. [124]
    Sun, H. Q.; Wang, S. B. Catalytic oxidation of organic pollutants in aqueous solution using sulfate radicals. Catalysis 2015, 27, 209–247.CrossRefGoogle Scholar
  125. [125]
    Kumar, P.; Kim, K.-H.; Kwon, E. E.; Szulejko, J. E. Metal-organic frameworks for the control and management of air quality: Advances and future direction. J. Mater. Chem. A 2016, 4, 345–361.CrossRefGoogle Scholar
  126. [126]
    Barea, E.; Montoro, C.; Navarro, J. A. R. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 2014, 43, 5419–5430.CrossRefGoogle Scholar
  127. [127]
    Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655.CrossRefGoogle Scholar
  128. [128]
    Izumi, Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.CrossRefGoogle Scholar
  129. [129]
    Toyao, T.; Miyahara, K.; Fujiwaki, M.; Kim, T.-H.; Dohshi, S.; Horiuchi, Y.; Matsuoka, M. Immobilization of Cu complex into Zr-based MOF with bipyridine units for heterogeneous selective oxidation. J. Phys. Chem. C 2015, 119, 8131–8137.CrossRefGoogle Scholar
  130. [130]
    Zaitan, H.; Manero, M. H.; Valdés, H. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination. J. Environ. Sci. 2016, 41, 59–68.CrossRefGoogle Scholar
  131. [131]
    Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781.CrossRefGoogle Scholar
  132. [132]
    Hu, J.; Yu, H. J.; Dai, W.; Yan, X. Y.; Hu, X.; Huang, H. Enhanced adsorptive removal of hazardous anionic dye “congo red” by a Ni/Cu mixed-component metal-organic porous material. RSC Adv. 2014, 4, 35124–35130.CrossRefGoogle Scholar
  133. [133]
    Petit, C.; Levasseur, B.; Mendoza, B.; Bandosz, T. J. Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous Mesoporous Mater. 2012, 154, 107–112.CrossRefGoogle Scholar
  134. [134]
    Seoane, B.; Téllez, C.; Coronas, J.; Staudt, C. NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Sep. Purif. Technol. 2013, 111, 72–81.CrossRefGoogle Scholar
  135. [135]
    Kim, H. K.; Yun, W. S.; Kim, M.-B.; Kim, J. Y.; Bae, Y.-S.; Lee, J.; Jeong, N. C. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009–10015.CrossRefGoogle Scholar
  136. [136]
    Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.CrossRefGoogle Scholar
  137. [137]
    Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 2009, 131, 458–460.CrossRefGoogle Scholar
  138. [138]
    Greathouse, J. A.; Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 2006, 128, 10678–10679.CrossRefGoogle Scholar
  139. [139]
    Zhou, X.; Huang, W. Y.; Shi, J.; Zhao, Z. X.; Xia, Q. B.; Li, Y. W.; Wang, H. H.; Li, Z. A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. J. Mater. Chem. A 2014, 2, 4722–4730.CrossRefGoogle Scholar
  140. [140]
    Yusuf, K.; Aqel, A.; Alothman, Z. Metal-organic frameworks in chromatography. J. Chromatogr. A 2014, 1348, 1–16.CrossRefGoogle Scholar
  141. [141]
    Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.CrossRefGoogle Scholar
  142. [142]
    Han, S.; Lah, M. S. Simple and efficient regeneration of MOF-5 and HKUST-1 via acid-base treatment. Cryst. Growth Des. 2015, 15, 5568–5572.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of Nano Sciences and MaterialsCentral University of JammuJammuIndia

Personalised recommendations